

Operating Manual

Analytical Computer GC9300

Firmware2.05Status:October, 12th 2023Version:15 EN

Manufacturer	Contact our customer service department for technical
	information.

Address	RMG Messtechnik GmbH Otto-Hahn-Straße 5 D-35510 Butzbach (Germany)
Main office	+49 6033 897 – 0
Service	+49 6033 897 – 0
Spare parts	+49 6033 897 – 173
Fax	+49 6033 897 – 130
Email	service@rmg.com

Translation of the	The PGC9300_AC_manual_en_15 for the gas
original document	chromatograph PGC 9300 from October, 7th 2019 is a
	translation of the original German manual. Anyhow, this
	document may serve as reference for translations into
	other languages.
Remark	Please use in case of any uncertainties the German version as main reference

Note The latest version of this manual (and the one other devices) can be downloaded at your convenience from our Internet page:

www.rmg.com

	Created	July	2011
	12. Revised	September	2018
	13.Revised	June	2019
	14. Revised	October, 7th	2019
Document version and	Document ver-	PGC9300_AC	C_manual_en_15
language	sion	October, 7th 2	2019
	Language	EN	

.....

RMG[•]

.....

Contents

1 A	BOUT THIS MANUAL1	
1.1	Structure of this manual1	
1.1.1	Abbreviations1	
1.1.2	Symbols	
1.1.3 1.1.4	Structure of notices	
1.1.4	Risk assessment and minimization	
1.1.6	Applicability of the manual	
1.1.7	Transport	
1.1.8	Scope of delivery11	
1.1.9	Disposal of packaging material	
1.1.1() Storage	
1.2	Structure of the manual12	
1.3	Function13	
1.4	Mode of operation13	
1.5	Area of applicability14	
2 II	NTRODUCTION16	
2.1	Touch screen16	
2.2	Operation17	
2.2.1	Operating modes	
2.3 2.3.1	Data storage	
-	Archive according to the DSfG standard20	
2.4	Signatur21	
3 1	NSTALLATION	
3.1	Installation	
3.2	Electrical connections	
3.2.1	Connection assignment	
3.2.2 3.2.3	Power supply	
3.2.3	Additional external In- and Outputs	
•		
4 C	OMMISSIONING	
4.1.1	Establishing connection to the PC34	
4.1.2	Switching on the device	
4.2	Gateway GC 931035	
4.2.1	GC 9310 commissioning	
4.2.2	Interfaces and logs	

.....

.....

П

RMG

.....

4.2.3	Data storage	
4.2.4	Electrical connections of the GC 9310	40
4.3	Compatible mode GC9390	45
5 O	PERATION	51
5.1	Operation on the touch screen	51
5.1.1	Start screen	
5.1.2	Data: Results of the last analysis	
5.1.3	Graph - Trends: Trend display of arbitrary values	
5.1.4	Graph - Chroms: Chromatogram of the last analysis	
5.1.5	Status - Measuring element: Status displays, e.g. column temperature	55
5.1.6	Status – Dig. I/O: Status display of digital inputs and outputs	
5.1.7	Service: Service functions	
5.1.8	User: User-specific display	
5.1.9	Detail: List of all measurements and parameters of the GC 9300	
5.1.10		
5.1.11	Log: Display of the log books	
5.1.12 5.1.13		
5.1.13		
	Operation examples	
5.2.1	Enter code number	
5.2.2	Change operating mode	
5.2.3		~ 1
E O 4	Program current output	
5.2.4	Read values for maintenance log entry	65
5.3	Read values for maintenance log entry Bake-out	65 67
	Read values for maintenance log entry	65 67
5.3 5.3.1	Read values for maintenance log entry Bake-out	65 67
5.3 5.3.1 5.4	Read values for maintenance log entry Bake-out Bake-out process	65 67 67 72
5.3 5.3.1 5.4 5.5	Read values for maintenance log entry Bake-out Bake-out process Retention time monitoring	65 67 72 74
5.3 5.3.1 5.4 5.5 5.6	Read values for maintenance log entry Bake-out Bake-out process Retention time monitoring View and read archive via internet browser	65 67 72 74
5.3 5.3.1 5.4 5.5 5.6 5.7	Read values for maintenance log entry Bake-out Bake-out process Retention time monitoring View and read archive via internet browser Operation with RMGView ^{GC}	65 67 72 74 74 75
5.3 5.3.1 5.4 5.5 5.6 5.7 6 T	Read values for maintenance log entry Bake-out Bake-out process Retention time monitoring View and read archive via internet browser Operation with RMGView ^{GC} Error messages ECHNICAL DATA	65 67 72 74 74 75 83
5.3 5.4 5.5 5.6 5.7 6 T APPE	Read values for maintenance log entry Bake-out Bake-out process Retention time monitoring View and read archive via internet browser Operation with RMGView ^{GC} Error messages	65 67 72 74 74 75 83 85

.....

RMG

1 About this manual

1.1 Structure of this manual

This manual provides information that is necessary for fault-free and safe operation.

The analytical computer GC 9300 was designed and produced according to the state of the art and generally recognized safety standards and directives. However, its use can entail dangers that are avoidable by complying with this manual. The analytical computer GC 9300 must only be used as intended and in technically sound condition.

Warning

Unintended use voids all warranty claims and the analytical computer GC 9300 can also lose its approvals.

1.1.1 Abbreviations

The following abbreviations are used:

ca.	circa, about
max.	maximum
min.	minimum
e.g.	for example
MID	Measurement Instruments Directive
PED (DGRL)	Pressure Equipment Directive (Druckgeräterichtlinie)
DSfG	Digitale Schnittstelle für Gasmessgeräte Digital interface for gas flow rate meters, created under the umbrella of the DVGW
DVGW	Deutsche Verein des Gas- und Wasserfaches German Gas and Water Association
MessEG	Measuring and calibration law Law on placing and providing measuring instruments on the market, their use and calibration; valid since 1.1.2015
MessEV	Measuring and calibration regulations Regulation on placing and providing measuring instru- ments on the market; their use and verification; 11.12.2014

1 About this manual

2

TCP/IP	Transmission Control Protocol/Internet Protocol
IP (-Adress)	Address assigned to devices based on the Internet Pro- tocol (IP). This makes devices addressable and acces- sible in the network.
LAN	LAN (Local Area Network) is a local or local network, a computer network.
Eth1 / Eth2	Ethernet interface 1 /2 Ethernet technology enables data to be exchanged in the local network between the connected devices.
SNTP	Simple standard (NTP = Network Time Protocol) to syn- chronisierung von Uhren in Computersystemen
РТВ	Physikalisch-Technische Bundesanstalt German authority for calibration tasks

1.1.2 Symbols

The following symbols are used:

1, 2,	Identifies steps for work tasks

1.1.3 Structure of notices

The following notices are used:

🛕 Danger

This warning notice informs you of imminently threatening dangers that can arise due to misuse/operator error. If these situations are not avoided, death or severe injuries can occur.

M Warning

This warning notice informs you of potentially dangerous situations that can arise due to misuse/operator error. If these situations are not avoided, minor injuries can occur.

A Caution

This notice informs you of potentially dangerous situations that can arise due to misuse/operator error. If these situations are not avoided, damage to the device or nearby property can occur.

Note

This notice informs you of potentially dangerous situations that can arise due to misuse/operator error. If these situations are not avoided, damage to the device or nearby property can occur.

This notice can provide you with helpful tips to make your work easier. This notice also provides you with further information about the device or the work process in order to prevent operator error.

1.1.4 Working with the device

1.1.4.1 Safety notices Danger, Warning, Caution and Note

	Danger
All of	the following safety notices must be observed!
	gard of the safety notices can result in danger to the life and limb or onmental and property damage.

Bear in mind that the safety warnings in this manual and on the device cannot cover all potentially dangerous situations, because the interaction of various conditions can be impossible to foresee. Merely following the instructions may not suffice for correct operation. Always remain attentive and consider potential consequences.

- Read this operating manual and especially the following safety notices carefully before working with the device for the first time.
- Warnings are provided in the operating manual for unavoidable residual risks for users, third parties, equipment or other property. The safety instructions used in this manual do not refer to unavoidable residual risks.
- Only operate the device in fault-free condition and in observance of the operating manual.
- Compliance with local statutory accident prevention, installation and assembly regulations is also mandatory.

Note

All notices in the manual must be observed.

Use of the analytical computer GC 9300 is only permitted in accordance with the specifications in the operating manual.

RMG assumes no liability for damages arising due to disregard of the operating manual.

RMG

A Danger

Service and maintenance tasks or repairs that are not described in the operating manual must not be carried out without prior consultation with the manufacturer.

Changes to the analytical computer GC 9300 are not permitted.

The technical specifications must be observed and followed for safe operation (*Chapter 6 Technical data*). Performance limits must not be exceeded.

For safe operation, the analytical computer GC 9300 must only be used in the scope of the intended use (*Chapter 1.3 Function* to *1.5 Area of applicabil-ity*)

The GC 9300 complies with current standards and regulations. However, danger can arise with misuse and the measuring element of the PGC can be destroyed due to operator error.

1.1.4.2 Dangers during commissioning

Initial commissioning The initial commissioning must only be carried out by specially trained personnel (training by RMG) or RMG service personnel.

Note

An acceptance test certificate must be created during the commissioning. This, the operating manual and the CE Declaration of Conformity must be stored so that they are always readily available.

All sharp edges on the device were removed, insofar as possible. However, suitable personal protective equipment provided by the operator must be worn during all work.

A Danger

This symbol is used in the manual as a warning of the danger of explosion; observe the instructions following the symbol. With the danger of explosion, the following must be observed, in particular:

The analytical computer GC 9300 is not approved or designed for use in explosion-prone areas. Installation must only take place in safe rooms. The analytical computer is intended for installation in a control cabinet in an electronics room.

Install the device as specified in the operating manual. If the device is not installed as specified in the operating manual, there may be a risk that other connected devices have adequate explosion protection.

Inadequately qualified persons working on the equipment are unable to correctly estimate dangers. Explosions can be triggered. Only work on the equipment if you have the appropriate qualifications.

Components can be damaged if you do not use suitable tools and materials. Use tools that are recommended for the respective work in the operating manual.

Mechanical installation	Mechanical installation must only be performed by appro- priately qualified technicians.
Electrical installation	Installation on electrical components must only be carried out by qualified electricians.
Mechanical and/or elec- trical installation	These qualified personnel require training specifically for work in explosion-prone areas. Qualified personnel are persons who have training / education in accordance with DIN VDE 0105, IEC 364 or comparable standards .

Note

 Before connecting the voltage supply, ensure that all gas lines to the measuring element and the measuring element itself have been flushed. If there is still air in the line system or the measuring element, the measuring element will be destroyed. For this reason, you must also observe the operating manual for the PGC measuring element CP 4900!

A Danger

 In general, the replacement of an analytical computer GC 9300 must only be carried out by RMG Service.

1.1.4.3 Dangers during maintenance and repair

Operating personnel	The operating personnel use and operate the device in the scope of the intended use.
Maintenance personnel	Work on the device must only be carried out by qualified personnel who can carry out the respective tasks on the basis of their technical training, experience and familiarity with the applicable standards and requirements. These qualified personnel are familiar with the applicable statu- tory regulations for accident prevention and can inde- pendently recognize and avoid potential dangers.
Maintenance and clean- ing	Maintenance and cleaning must only be performed by appropriately qualified technicians.

Danger

Inadequately qualified persons working on the equipment are unable to correctly estimate dangers. Explosions can be triggered.

▲ Danger

The device can be damaged if it is not cleaned as specified in the operating manual. Only clean the device as specified in the operating manual.

Components can be damaged if you do not use suitable tools.

- Only clean the device with a slightly damp cloth!

1.1.4.4 Qualification of personnel

Note

8

In general, the following is recommended for all persons working with or on the analytical computer GC 9300:

- Training / education for work in explosion-prone areas.
- The capacity to be able to correctly estimate dangers and risks when working with the analytical computer GC 9300 and all connected devices.
- Training / education by RMG for work with gas measuring devices.
- Education / instruction in all national standards and directives to be complied with for the work to be carried out on the GC 9300 analytical computer.

1.1.5 Risk assessment and minimization

According to assessment by qualified employees of RMG, the analytical computer GC 9300 is subject to risks during its use. Risks can arise, for instance, during use outside of the permissible temperature range. Impermissible current and voltage values can trigger explosions in explosion-prone areas. Naturally, work must only be carried out by trained personnel (see *chapter 1.1.4.4 Qualification of personnel*), who are also trained to recognize suitable tools and use them exclusively. These risks were summarized alongside development and measures were taken to minimize these risks.

Measures for risk minimization:

- The maximum permissible temperature range is specified on the type plate of the analytical computer GC 9300. Operation of the device is only permitted within these specified ranges.

Danger

- The wiring from and installation of the analytical computer GC 9300 in explosion-prone areas must only be carried out by trained personnel in accordance with EN60079-14 and in observance of national regulations.
- Qualified persons must satisfy the definitions in accordance with DIN EN 0105 or IEC 364 or directly comparable standards.
- Only trained and instructed personnel are permitted. Work on the measuring system must only be carried out from qualified persons and inspected by responsible qualified supervisors.
- Qualified persons have been authorized by the person responsible for safety of personnel to carrying out such work on the basis of their training, experience or instruction and familiarity with applicable standards, provisions, accident prevention regulations and system conditions. It is essential that these persons are able to recognize and avoid potential dangers in good time.

1.1.6 Applicability of the manual

This manual describes the analytical computer GC 9300. The analytical computer GC 9300 is only part of a complete system. The manuals of the other components of the system must be observed. If you find contradictory instructions, contact RMG and/or the manufacturers of the other components.

Note

Ensure that the power data of the current connection matches the specifications on the type plate. Observe any applicable national regulations in the country of use. Use cable that is appropriate for the cable fittings.

🛦 Danger

Only work on the equipment if you have the appropriate training and qualifications.

1.1.6.1 Danger during operation

Observe the specifications of the system manufacturer and/or system operator.

1.1.6.2 Dangers of operation in EX areas

The analytical computer GC 9300 is not intended for use in explosion-prone areas.

Only operate the analytical computer GC 9300 in fault-free and complete condition.

If you make technical changes to the device, safe operation can no longer be guaranteed.

🛦 Danger

10

- Only use the analytical computer GC 9300 in its original condition.
- When connecting the measuring element, an external oxygen sensor or additional equipment in explosion-prone areas, ensure that the appropriate explosion protection is provided for these components.
- They are intrinsically safe devices for which galvanic isolation must be provided with connection of these devices.

1.1.6.3 Responsibility of the operator

As the operator, you must ensure that only adequately qualified personnel work on the device. Ensure that all employees who work with the device have read and understood this manual. You are also obligated to train personnel regularly and inform them of the dangers. Ensure that all work on the device is carried out exclusively by qualified persons and inspected by responsible qualified supervisors. The responsibilities for installation, operation, fault rectification, maintenance and cleaning must be clearly regulated. Instruct your personnel with regard to the risks involved with working with the device.

1.1.7 Transport

The device is packaged specific to the transport requirements for each customer. Ensure safe packaging that absorbs light impact and vibrations is used for any further transport. Nevertheless, inform the transport company that all types of impact and vibrations should be avoided during transport.

1.1.8 Scope of delivery

The scope of delivery can differ depending on the optional orders. The following is "normally" included in the scope of delivery:

Part	Quantity
Analytical computer GC 9300	1
Optional: Gateway GC 9310	1
Manual	1

1.1.9 Disposal of packaging material

Dispose of the material in an environmentally friendly manner in accordance with national standards and directives.

1.1.10 Storage

Avoid extended periods of storage. Inspect the analytical computer GC 9300 for damage and correct function after storage. Contact the RMG service department to arrange for inspection of the device after a storage period of longer than one year. For this purpose, send the device to RMG.

Structure of the manual 1.2

The introduction of this manual comprises two parts. The first part lists general specifications; the symbols used in the manual and the structure of notices are presented and a risk assessment is provided. It also includes specifications for transport and storage of the analytical computer GC 9300. The second part describes how the GC 9300 works and its intended purpose.

The second chapter explains the basic function and operation of the GC 9300 and data storage - taking place in accordance with the DSFG standard, in particular. The electrical connections, inputs, outputs and interfaces are explained in the third section.

The fourth chapter describes the commissioning and how the GC 9300 is connected to a PC. It also explains that the number of DSFG interfaces can be increased using a gateway - the GC 9310. The fifth chapter covers the operation of the GC 9300 and explains the individual menus in detail.

Chapter six summarizes the technical specifications. The Appendix provides an extensive list of parameters and some additional details about the GC 9310.

1.3 Function

The analytical computer GC 9300 is a component of the process gas chromatograph PGC 9300, which analyzes natural gas and biogas and provides the necessary measurement values to determine the energy content and calculate the compressibility factor. As a control computer, it determines the progress of the analysis and delivers measurement results. It stores all operating parameters and is also used for operation.

In addition to analysis control, the GC 9300 provides the following functions:

- Calculation of calorific value, heat value, standard density, and Wobbe index from the percentages of individual gas components in accordance with ISO 6976, and the optional calculation of the methane number.
- Storage of analysis results in archives.
- Comprehensive communication functions.
- Operating mode settings for inspection purposes and analysis of gas samples.

1.4 Mode of operation

The analytical computer GC 9300 is the controller for the process gas chromatograph PGC 9300 and controls the analysis process in the measuring element CP 4900. In normal operation, an analysis begins as soon as the preceding analysis is finished, wherein each analysis lasts about 3-4 minutes, depending on the variant.

The series of analyses proceeds without interruption by automatic calibrations. A calibration, whether it takes place automatically or is started manually, 4 or 5 calibrating gas analyses and takes between 12 and 16 minutes depending on the device type. The calibration interval of 1 day is specified in the PTB approval.

A calibration can also be started manually at any time.

The PGC 9300 can be designed as a **single stream** unit for analysis of the gas from one extraction point or as a **multi-stream** unit for up to 4 extraction points. With multi-stream units, the measured gases changes with each analysis in the standard setting.

The basis of an analysis is the signal curve of the sensor for each column unit, which is called a **chromatogram**. Each peak in this chromatogram marks a gas component. In the evaluation, the area under the peaks are determined, from which polynomials are derived to calculate the proportion of gas components in mol%. The polynomial coefficients are determined in the factory calibration in which a correction factor (**response factor**) is calculated for each component in the automatic and manual calibration.

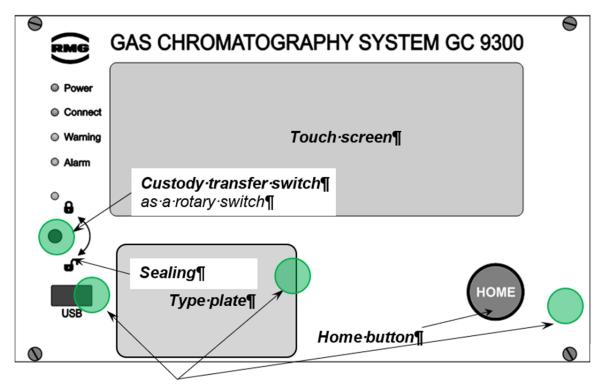
A **basic calibration** is carried out during commissioning and after various repair and service tasks. The response factors derived from this do not change during running operation and serve for comparison with the current response factors used for the evaluation. As a result, it can enable recognition of a drift of the measuring element due to an enrichment of moisture or heavy carbon dioxide. If the deviation is greater than 10%, an alarm message appears, and the column modules must be heated to gas out. Basic calibration is not permitted during running operation.

In addition to the custody transfer parameters calorific value and standard density, which were already mentioned, the analytical computer calculates the heating value, density ratio and Wobbe index, and, optionally, the methane number as a non-custody-transfer factors from the individual components. The calculation takes place in accordance with ISO 6976 (except for the methane number).

1.5 Area of applicability

The analytical computer GC 9300 is an essential element of the overall measuring unit, which analyzes natural gas and biogas and provides the necessary measurement values to determine the energy content and calculate the compression ability factor. The analytical computer GC 9300 is the controller, or control computer, for the process gas chromatograph PGC 9300 and controls the analysis process in the measuring element CP 4900. It stores all operating parameters and is also used for operation. It records and calculates the measurements, enables display of the measurement results and calculation factors and stores and transmits this data.

The PGC9300_ME_manual_en_06 (and the English manual) describes the different types that are used in different areas. The PGC 9301 is designed for use in "normal" natural gas. It works with 2 column modules. The PGC 9302 is designed for use in biogas. It works with 2 column modules (A and C). The PGC 9303 allows the determination of further gas components in "normal" natural gas. It works with 3 column modules (A, B and C). The PGC 9304 allows the determination of further gas components in "normal" natural gas. It works (A, B and C), whereby argon is used as carrier gas in column C. The PGC 9305


complies with the PGC 9301. For this PGC there will be a separate approval according to Russian regulations, the GOST. The differences are described in more detail in the Russian manual.

The permissible environmental temperatures, current and voltage values for safe operation are specified in *chapter 6 Technical data*.

2 Introduction

2.1 Touch screen

Safety marks¶

The following display and operating elements are located on the front panel:

Green LED	Continuously illuminated: Voltage indicator.
(Power)	Blinking light: Open custody transfer switch and/or open user lock.
Orange LED (Connect)	Continuously illuminated: The measuring element is connected and active.
Yellow LED	Continuously illuminated: A warning has been issued
(Warning)	Blinking light: Warning: Current fault of non-custody-transfer function(s)
Red LED	Continuously illuminated: An alarm has been issued
(Alarm)	Blinking light: Alarm: Current fault of custody transfer function(s)
Custody transfer switch	Sealable rotary switch; the custody transfer lock is opened at the me- chanical limit stop (in clockwise direction).
USB interface	For connection of USB components (e.g. a mouse), sealed in custody transfer mode.
HOME button	To switch between the start screen and error screen.
Touch screen	Display and control panel of the analytical computer.

Operation via the touch screen is possible with an easy to understand menu. A PC connected via the network interface enables the following types of operation:

- 1. Operating software RMGView^{GC}.
- 2. Any internet browser for viewing and storing of non-custody-transfer archives.

Further operating possibilities are available via DSfG bus with RMG software products such as the PGC revision program AKA-II.

2.2 Operation

Operation takes place on the analytical computer GC 9300 and enables the following actions:

- Reading of analysis results
- Starting of a manual calibration
- Switchover of the analysis from measuring gas to testing gas (reference gas)
- Displaying and changing operating parameters
- Viewing of archives and log books
- Display of chromatograms
- Display of error messages
- Display of the device status
- Baking out

Note

Entry of the code number and/or opening of the custody transfer switch is necessary for nearly all actions other than the display functions.

2.2.1 Operating modes

The following operating modes are available for the PGC 9300 in the "Details" screen under "GC 9300 mode":

- AUTORUN Normal analysis mode with automatic calibrations
 STOP Analysis mode is stopped
 - BASIC CALIB.
 Basic calibration
 - (protected against inadvertent triggering)
 - NORMAL CALIB. Manually started calibration (equivalent to automatic cal.)
 - **REF GAS** Test gas analysis (reference gas)

2.3 Data storage

There are **two** archives available for storage of analysis results - a **non-custody-transfer** measurement archive and a **custody transfer** archive according to the DSfG standard. The structure and memory capacity of the two archives are as follows:

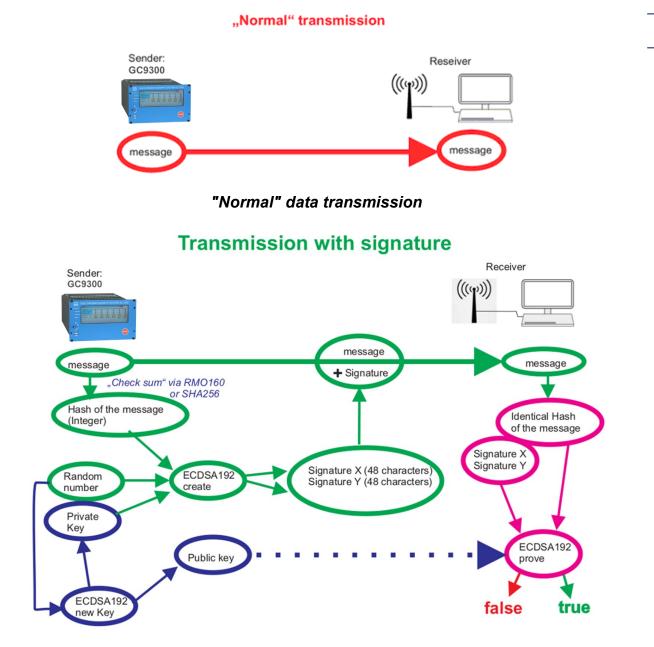
Measurement archive

1	Event log book	1,000 entries
2	Parameter log book	1,000 entries
3	Individual analysis archive	351,360 entries
4	Hourly averages archive	17,568 entries
5	Daily averages archive	186 entries
6	Monthly averages archive	120 entries
\bigcirc	Calibration results archive	14,640 entries

	1	2	3	4	(5)	6	\bigcirc
Date, time	•	•	•	•	•	•	•
Event (text)	•						
Parameter – old value		•					
Parameter – new value		•					
Number of analyses per entry			•	•	•	•	
Number of valid analyses			•	•	•	•	
Stream, gas type			•	•	•	•	
Calorific value			•	•	•	•	•
Wobbe index			•	•	•	•	•
Standard density			•	•	•	•	•
Density ratio			•	•	•	•	•
Calorific value			•	•	•	•	•
Real gas factor			•	•			•
Methane number			•	•	•	•	•
Unnormalized total			•	•	•	•	•
Molar content of individual components (20)			•	•			•
User values (20)			•	•	•	•	
Peak area (20)							•
Retention times (20)							•
Retention times with the basic calibration							•
Response factors (20)							•
Response factors with the basic calibration (20)							
Peak start time (20)							•
Peak end time (20)							•
Total area							•

2.3.1 Archive according to the DSfG standard

The DSfG archive is divided into archive groups 1 to 23:


AG	Description	Contents	Entries
1	Hourly averages 1Ho, rhon, Dv, N2, CO2, H2, Hu, Wo, Wu,MZ, Zn, bit string		2280
3	Measurements	Ho, rhon, components, bit string	960
5	Hourly averages 2	Ho, rhon, components, bit string	2280
7	Daily averages	Ho, rhon, components, bit string	95
9	Monthly average	Ho, rhon, components, bit string	24
11	Calibration gas	Calibration results: Δ Ho, Δ rhon, Δ CO _{2,} RFs, cal. status	200
13	Reference gas	Ho, rhon, components, bit string, Hu	700
15	Long-term archive	Ho, rhon, CO ₂ , bit string	70848
17	Analog averages	Analog values 1 to 16, status bit string	2280
19	Extended Hourly averages	Hu, Wo, Wu, MZ, Zn, unnormalized total components	2280
21	Reference gas	Ho, rhon, CO ₂ , bit string	700
23	Log book	Event, Ho, rhon, components	2280

RMG

2.4 Signatur

The GC9300 controller offers the option of marking recorded data with an accompanying signature. In the process, the data is not encrypted, but the signature makes it possible to determine whether the data originated from a "secure" source and whether the data quantity was manipulated.

The following figures "Normal" data transmission and Signed data transmission clarify the process.

Signed data transmission

With "normal" data transmission, the data is sent by a transmitter to the receiver, which can process said data. In the process, the data must not be considered as trustworthy and any potential data manipulation cannot be checked.

The process for a signed data transmission is somewhat more complicated. There are essentially 3 processes.

 A program, ECDSA192 (Elliptic Curve Digital Signature Algorithm) in the GC9300 controller generates 2 keys after a random number is loaded: a private key and a public key. These keys consist of 2 parts, signature X and signature Y, wherein each part consists of 48 hexadecimal characters (4 x 48 = 192; thus ECDSA192).

The private key is stored inaccessibly inside the GC9300 controller.

Note

This key cannot be read or changed in the sealed state of the GC9300 controller.

The public key, for example, can be read in the menu **18. DSfG -> 03 Signature:**

18.03.06 Public Key Qx1 (first 20 characters), 18.03.07 Public Key Qx2 (second 20 characters), 18.03.08 Public Key Qx3 (additional 8 characters), and

18.03.09 Public Key Qy1 (first 20 characters), 18.03.10 Public Key Qy2 (second 20 characters), 18.03.11 Public Key Qy3 (additional 8 characters),

The recipient requires this public key in order to be able to identify the data.

- A hash is formed from the data of the message (either RMD160 or SHA256; see below, a type of checksum), which is entered as an integer in process
 The signature (signature X and signature Y), which is attached to the message, is calculated with the private key and a random number.
- 3. The recipient receives the message and the signature. The hash tag can be calculated from the message. The recipient can verify from the public key and signature whether or not the data is unchanged and originates from a "secure" source, i.e. from a trustworthy sender or whether this is not the case.

The generation of the key is not described in detail here. This signing is initiated in the menu **18.03 DSfG -> Signature**.

GC9300 Data Graph State Service User Details Archives Log DSfG Faults				
Selection	Name	Value	Unit 🔺	
 → 18 DSfG → 01 Bus-1 (COM3) → 02 Bus-2 (COM4) → 03 Signature → 04 Preset → 05 Archives settings → 06 Quality → 07 Events → 08 Bit strings → 19 External I/O System 		NONE NO 00:00:00 01.01.1970 NEVER NO		

Note

Access to the coordinates

18.03.01 Signature method

18.03.02 Sender

18.03.03 New key creation

is under calibration protection and they can only be initiated or changed with an open calibration switch.

The signing method is selected in the coordinate **18.03.01 Signature method**

- "no"
- "RMD160+ECDSA192"
- "SHA256+ECDSA192"

Note

The DVGW (German Association of the Gas and Water Industry) recommends using the RMD160 method for custody transfer applications.

A new key is generated in the coordinate **18.03.03 New key creation**.

Generation of a new key is generally recommended when the GC9300 controller is left unsupervised with an open calibration switch for an extended time, e.g. during repairs.

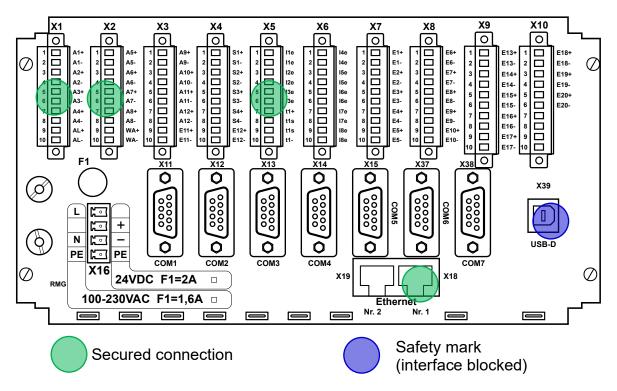
3 Installation

3.1 Installation

The analytical computer GC 9300 is intended for installation in a control cabinet in a non-Ex area. Installation takes place in a dedicated rack; the device dimensions are:

W x H x D = 213 x 128.4 x 310 mm (42 TE / 3 HE)

Danger


24

The GC 9300 is not intended for use in explosion-prone areas.

Installation must only take place in safe rooms!

3.2 Electrical connections

The following figure shows the rear wall of the GC 9300.

The connections are made on the rear wall. If the number of inputs/outputs is not adequate, an additional module (Wago) with additional digital and analog inputs

and outputs can be connected via an RS 232 interface. The corresponding parameters are displayed in the Details screen under "External I/O system".

Note

The Wago module can be parameterized without a code word or custody transfer lock.

3.2.1 Connection assignment

Pin assignment

X1				
1	A1+	Digital output 1 +	PGC: Valve stream 1 +	
2	A1-	Digital output 1 -	PGC: Valve stream 1 -	
3	A2+	Digital output 2 +	PGC: Valve stream 2 +	
4	A2-	Digital output 2 -	PGC: Valve stream 2 -	
5	A3+	Digital output 3 +	PGC: Valve stream 3 +	
6	A3-	Digital output 3 -	PGC: Valve stream 3 -	
7	A4+	Digital output 4 +	PGC: Valve stream 4 +	
8	A4-	Digital output 4 -	PGC: Valve stream 4 -	
9	AL+	Alarm contact +	PGC: Alarm +	Contact open in the
10	AL-	Alarm contact -	PGC: Alarm -	event of an alarm

X2]					
1	A5+	Digital output 5 +	Calibration gas valve	Calibration gas valve		
2	A5-	Digital output 5 -	Calibration gas valve			
3	A6+	Digital output 6 +	Reference gas valve			
4	A6-	Digital output 6 -	Reference gas valve			
5	A7+	Digital output 7 +	Calibration running			
6	A7-	Digital output 7 -	Calibration running			
7	A8+	Digital output 8 +	Collective message for digital outputs 9 - 12			
8	A8-	Digital output 8 -	Collective message for digital outputs 9 - 12			
9	WA+	Warning contact +	PGC: Warning	Contact open in the		
10	WA-	Warning contact -	PGC: Warning	event of a warning		

X3		
1	A9+	Digital output 9 + Limit value exceeded analog value 1*
2	A9-	Digital output 9 - Limit value exceeded analog value 1*
3	A10+	Digital output 10 + Limit value exceeded analog value 2*
4	A10-	Digital output 10 - Limit value exceeded analog value 2*
5	A11+	Digital output 11 + Limit value exceeded analog value 3*
6	A11-	Digital output 11 - Limit value exceeded analog value 3*
7	A12+	Digital output 12 + Limit value exceeded analog value 4*
8	A12-	Digital output 12 - Limit value exceeded analog value 4*
9	E11+	Input 11 + (Note: passive input, U _{max} = 30 V)
10	E11-	Input 11 – (Note: passive input, U _{max} = 30 V)

* The analog values under "Specialties" can be monitored for limit values. Exceeding these limits leads to a warning or the setting of a signaling contact.

X4		
1	S1+	Current output 1 +
2	S1-	Current output 1 -
3	S2+	Current output 2 +
4	S2-	Current output 2 -
5	S3+	Current output 3 +
6	S3-	Current output 3 -
7	S4+	Current output 4 +
8	S4-	Current output 4 -
9	E12+	Input 12 + (Note: passive input, U _{max} = 30 V)
10	E12-	Input 12 – (Note: passive input, U _{max} = 30 V)

X5		Polarity of current inputs depends on operating mode (active/passive).		
1	l1e	Current input 1	Carrier gas pressu	ure – I (He)
2	l1e	Current input 1	Carrier gas pressu	ure – I (He)
3	l2e	Current input 2	Measuring gas pre	essure
4	l2e	Current input 2	Measuring gas pre	essure
5	l3e	Current input 3	(active - / passive	+)
6	l3e	Current input 3	(active + / passive	-)
7	t1+	Temperature input 1	supply ++	Room temperature
8	t1s	Temperature input 1	sense +	Room temperature
9	t1s	Temperature input 1	sense -	Room temperature
10	t1-	Temperature input 1	supply	Room temperature

.....

X6		Polarity of current inputs depends on operating mode (active/passive).
1	l4e	Current input 4 (active - / passive +)
2	l4e	Current input 4 (active + / passive -)
3	l5e	Current input 5 Carrier gas pressure – II (argon)
4	l5e	Current input 5 Carrier gas pressure – II (argon)
5	l6e	Current input 6 (active - / passive +)
6	l6e	Current input 6 (active + / passive -)
7	l7e	Current input 7 / Temperature input 2 supply ++
8	l7e	Current input 7 / Temperature input 2 sense +
9	18e	Current input 8 / Temperature input 2 sense -
10	18e	Current input 8 / Temperature input 2 supply

X7			
1	E1+	Digital input 1 +	P _{min} helium - 1
2	E1-	Digital input 1 -	P _{min} helium - 1
3	E2+	Digital input 2 +	P _{min} helium - 2
4	E2-	Digital input 2 -	P _{min} helium - 2
5	E3+	Digital input 3 +	P _{min} calibration gas
6	E3-	Digital input 3 -	P _{min} calibration gas
7	E4+	Digital input 4 +	P _{min} test gas
8	E4-	Digital input 4 -	P _{min} test gas
9	E5+	Digital input 5 +	T _{min} calibration gas
10	E5-	Digital input 5 -	T _{min} calibration gas

X8			
1	E6+	Digital input 6 +	T _{min} test gas
2	E6-	Digital input 6 -	T _{min} test gas
3	E7+	Digital input 7 +	P _{max} high-pressure reduction stream - 1
4	E7-	Digital input 7 -	P _{max} high-pressure reduction stream - 1
5	E8+	Digital input 8 +	P _{max} high-pressure reduction stream - 2
6	E8-	Digital input 8 -	P _{max} high-pressure reduction stream - 2
7	E9+	Digital input 9 +	P _{max} high-pressure reduction stream - 3
8	E9-	Digital input 9 -	P _{max} high-pressure reduction stream - 3
9	E10+	Digital input 10 +	P _{max} high-pressure reduction stream - 4
10	E10-	Digital input 10 -	P _{max} high-pressure reduction stream - 4

.....

X9			
1	E13+	Digital input 13 +	Valve control stream – 1
2	E13-	Digital input 13 -	Valve control stream – 1
3	E14+	Digital input 14 +	Valve control stream – 2
4	E14-	Digital input 14 -	Valve control stream – 2
5	E15+	Digital input 15 +	Valve control stream – 3
6	E15-	Digital input 15 -	Valve control stream – 3
7	E16+	Digital input 16 +	Valve control stream – 4
8	E16-	Digital input 16 -	Valve control stream – 4
9	E17+	Digital input 17 +	Alarm input
10	E17-	Digital input 17 -	Alarm input

X10			
1	E13+	Digital input 18 +	P _{min} argon - 1
2	E13-	Digital input 18 -	P _{min} argon – 1
3	E14+	Digital input 19 +	P _{min} argon – 2
4	E14-	Digital input 19 -	P _{min} argon – 2
5	E15+	Digital input 20 +	Warning input
6	E15-	Digital input 20 -	Warning input
7		Not allocated	
8		Not allocated	
9		Not allocated	
10		Not allocated	

3.2.2 Power supply

X16	230 V/AC version		24 V/DC version	
	L	100 – 230 V		Not allocated
		Not allocated	+	+ 24 V
	Ν	100 – 230 V	-	- 24 V
	PE	Potential equalization	PE	Potential equalization

3.2.3 Interfaces

Network interfaces

X18:	Ethernet interface 1	For connection with the measuring element CP 4900	29
X19:	Ethernet interface 2	For connection of a PC or to a local network RJ45 socket for LAN/Ethernet (DHCP Client or fixed IP address) Protocols: - Ethernet TCP/IP - Modbus TCP - http - DSfG-B - NTP	

Serial interfaces

X11:	COM 1	RS 232 / RS 485 *	Modbus RTU / Modbus ASCII
X12:	COM 2	RS 232	WAGO-IO / GPS 170
X13:	COM 3	RS 232 / RS 485 *	DSfG / Modbus RTU / Modbus ASCII / RMG-Bus
X14:	COM 4	RS 232 / RS 485 *	DSfG / RMG-Bus
X15:	COM 5	RS 232	Modbus RTU / Modbus ASCII
X37:	COM 6	RS 232 / RS 485 *	Modbus RTU / Modbus ASCII / RMG-Bus
X38:	COM 7	RS 232 / RS 485*	Modbus RTU / Modbus ASCII

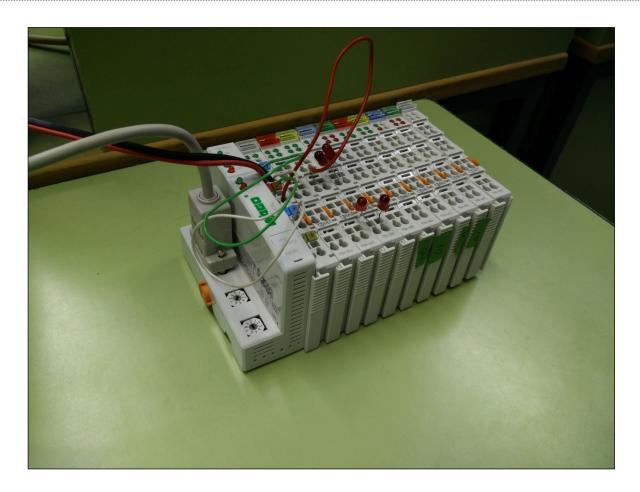
* configurable in the device with jumpers, delivery state in bold text.

3.2.4 Additional external In- and Outputs

The GC9300 and GC9310 (Gateway) have a maximum of in- and outputs:

- 8 analog inputs
- 4 analog outputs
- 20 digital inputs
- 12 digital outputs

If required, this limitation can be simply extended including external Wago modules:

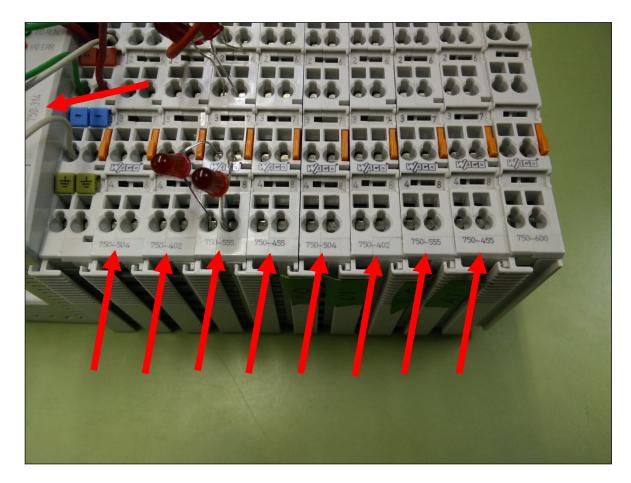

- Up to 16 additional analog inputs
- Up to 16 additional analog outputs
- Up to 16 additional digital inputs
- Up to 16 additional digital outputs

Note

30

The extension of the number of external interfaces is also possible for the Gateway GC 9310.

The next figure shows such a setup:



The connection module, the fieldbus coupler as Wago 750-314 or Wago 750-316, as well as the end module, the bus terminal Wago 750-600 are fixed. Between the connection module and the end module you may choose the modules:

- 750-402 4-channel digital inputs
- 750-455 4-channel analog inputs
- 750-504 4-channel digital outputs
- 750-554 2-channel analog outputs
- 750-555 4-channel analog outputs
- 750-602 24 V DC power supply (galvanically isolated potential feed)

The next figure shows the above setup in an enlargement of the previous setup; the numbers of the Wago modules can be read.

With the above modules, the following inputs and outputs can be realized, for example:

- 16 digital inputs 4 x 750-402 4-channel digital inputs
- 16 analog inputs 4 x 750-455 4-channel analog inputs
- 16 digital outputs 4 x 750-504 4-channel digital outputs
 - 16 analog outputs 8 x 750-554 2-channel analog outputs or the 4 x 750-555 4-channel analog outputs *¹

*¹ or any number of both modules with up to 16 analog outputs.

The extension of the inputs and outputs can be implemented via a serial ports of the Wago modules to the **02 COM 2 interface** of the GC9300 family. To use the Wago modules, the following parameters on the GC93XX have to be set in the menu item **16 serial ports**, **02 COM 2** as shown in the next figure.

GC9300 Data Graph State Service User Details Archives Log DSfG Faults					
Selection		Name	Value	Unit	Т
15 In- and Outputs		Baud rate	9600		
ia Serial ports		Data bits	8N1		
01 COM1		Protocol	Wago-IO		
		Modbus ID	1		
03 COM3		Modbus text mode Modbus byte order	ANSI		
04 COM4			GC		
		Modbus reg. offs.	0		
		Modbus user list	OFF		
-07 COM7 WinCE(C1)		1			
08 RMGBus testmode	▼				

In menu item **19 External I/O System** (see next figure) you may read the additional available number of additional in- and outputs. In addition, the settings and status of the individual inputs and outputs can be parameterized and read here.

GC9300 Data Graph State Service User Details Archives Log DSfG Faults				
Selection	Name	Value	Unit	
□ 19 External I/O System □ 01 Analog output 1 □ 02 Analog output 2 □ 03 Analog output 3 □ 04 Analog output 4 □ 05 Analog output 5 □ 06 Analog output 6	Version no Number ana. outputs Number ana. inputs Number dig. outputs Number dig. inputs	0209 8 8 8 8	hex	
07 Analog output 7 08 Analog output 8 09 Analog output 9 ▼				

Note

The sequence of the digital inputs has been adapted to firmware version 2.003 and higher. It may therefore no longer match that of existing installations. Therefore, firmware updates should be avoided or should be realized from the RMG's service.

4 Commissioning

4.1.1 Establishing connection to the PC

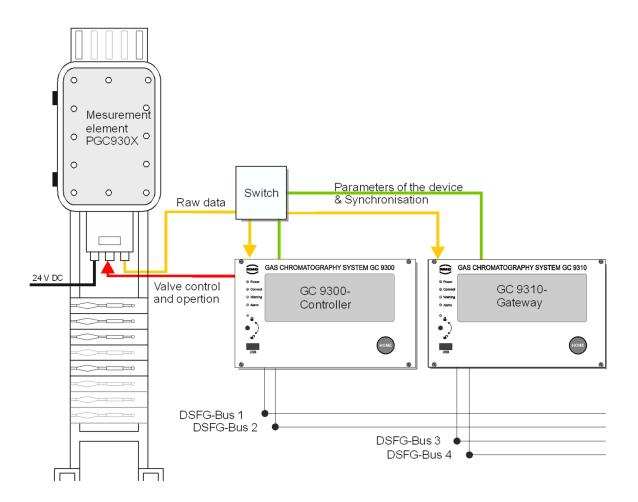
A crossover network cable is necessary for direct connection between the analytical computer and a PC; a standard network cable is required for connection to a hub.

4.1.2 Switching on the device

Caution
Before connecting the voltage supply for the measuring element, en- sure that all gas lines to the measuring element and the measuring el- ement itself have been flushed! If there is still air in the supply lines or the measuring element, the column modules can be destroyed. Proceed as described in the manual for the measuring element CP 4900 for ventilation.

Before switching on, please check whether the correct carrier gas pressure is set to 5.5 bar \pm 10 % in the status field. This adjustment is made via an external regulator on the bottle rack.

If this initial calibration is not successful, a second calibration must be performed immediately thereafter. If this calibration is also unsuccessful, operation is stopped automatically.


Manual GC 9300 EN15 · October, 12th 2023

RMG

4.2 Gateway GC 9310

As a control computer, the GC 9300 determines the progression of the analyses of the process gas chromatograph PGC 9300 and delivers measurement results. Operation takes place via the analytical computer GC 9300, where all operating parameters are stored. The gateway GC 9310 is **optional** and designed to extend the **2 DSFG interfaces of the GC 9300** to **4 DSFG interfaces (GC 9300 + GC 9310)**; if more than two additional DSfG buses are required, additional GC 9310 units can be connected. In this case, please contact the RMG service department.

The GC 9310 delivers the same measurement results as the GC 9300. Although the GC 9300 transmits the operating parameters to the GC 9310, the GC 9310 does not assume any tasks for control of the measuring element. The figure below shows the configuration.

Like the GC 9300, the operation, display and storage of data take place via touch screen, an internet browser or the operating software RMGView^{GC}.

Configuring GC 9300 for operation with GC 9310

In order to ensure that the GC 9300 Controller can work in combination with one or several GC 9310 gateways, the following settings must be made:

- LAN-1 must be set in *chapter 3.2 Electrical connections*.
- The gateways are connected via a hub to LAN-1 of the GC 9300.
- Then the menu entry "LAN-1" must be selected under Details "Network service" for the menu "DSfG extension".
- "Send params to GW" must be selected, then the parameters from the GC 9300 are transmitted to the GC 9310.

4.2.1 GC 9310 commissioning

- The GC 9300 controller is started up and completely configured (as described above)
- The GC 9300 is set to STOP
- The GC 9310 gateway is started up and configured (as described above)
- The GC log status LED on the start screen of the GC 9310 is now illuminated green
- Operating parameters of the GC 9300 are transmitted to the GC 9310
- The received parameters can be checked on the start screen of the GC 9310

Note

- In order for the GC 9310 to calculate in the same manner as the GC 9300, a manual calibration must be carried out!
- This calibration is necessary because the GC 9310 performs calculations automatically!
- When the GC 9300 continues running in AUTORUN, the two devices run in synchronized operation.

Note

 It must be ensured that the GC 9300 controller and GC 9310 gateway have the same time and date.
 For this purpose, use of the same time sync source is recommended for the two devices.

Like the GC 9300, the gateway GC 9310 is intended for installation in a control cabinet in the electronics room. Installation takes place in a dedicated rack; the device dimensions are:

W x H x D = 213 x 128.4 x 310 mm (42 DU / 3 HU)

The start screen shows the current status of the GC log. The GC log is used for communication between the GC 9300 and GC 9310.

Time	Macro	Value	
14:03:57 19.01.2017	StartOfDay	06	
14:03:57 19.01.2017	GasAnalyzerTyp	PGC9301	
14:03:57 19.01.2017	ApprovedFor	GASBESCHAFFENHEIT	
14:03:57 19.01.2017	GasAnalyzerNo	0	
14:04:25 19.01.2017	LastFinishTime	14:04:25 19.01.2017	
14:07:19 19.01.2017	LastFinishTime	14:07:19 19.01.2017	
14:10:10 19.01.2017	LastFinishTime	14:10:10 19.01.2017	

The LED shows the status of the GC log:

- Gray: No telegram received from the GC 9300.
- Green: Everything OK. Telegrams are being received regularly from the GC 9300.
- Red: Timeout. No telegrams have been received from the GC 9300 for an extended time. In this case an alarm is issued simultaneously.

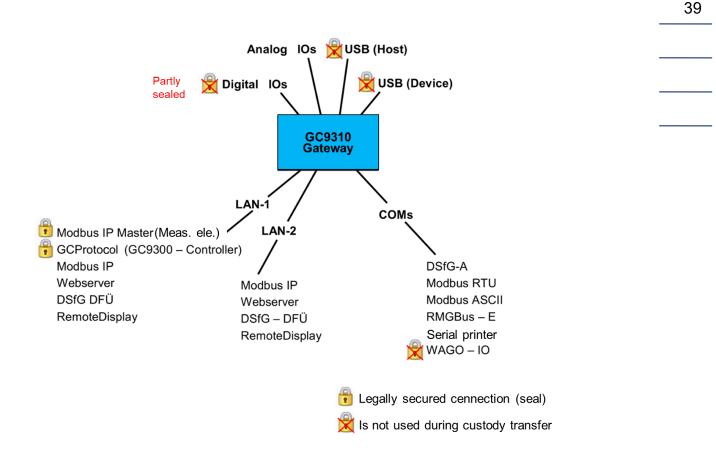
Like the GC 9300, the individual screens are arranged like tabs:

The values that the GC 9310 has received from the GC 9300 are shown in the table. All operating parameters, the number of the measuring element and the time stamp of the analyses are shown. The date and time of the device and the software version are displayed at the bottom edge.

37

GC9310-GW	Start screen with status of the GC log
Data	Results of the last analysis
Graphs	Chromatograms and trends
Service	Service functions
User	User-specific display
Detail	List of all measurements and parameters of the GC 9310
Archive	Display of the GC archive
Log	Display of the log books
DSfG	Display of the DSfG archive
Errors	Display of error messages with date and time

The gateway GC 9310 enables:

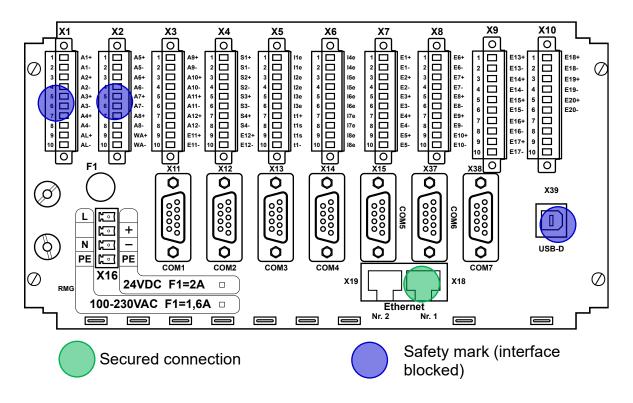

- Reading of analysis results
- Displaying and changing operating parameters
- Displaying and saving of analysis results in archives and log books
- Display of chromatograms
- Display of trends
- Display of error messages
- Display of the device status
- Display of the GC log status
- Comprehensive communication functions.
- Calculation (or adoption from the GC 9300) of calorific value, heat value, standard density, and Wobbe index from the percentages of individual gas components in accordance with ISO 6976, and the optional calculation of the methane number.

Like the GC 9300, entry of the code number and/or opening of the custody transfer switch is normally necessary for nearly all actions other than the display functions.

4.2.2 Interfaces and logs

RMG

The gateway GC 9310 basically offers the same interfaces and logs as the GC 9300. The **GC log** for communication between the GC 9300 and GC 9310 has been **recently added**. **Digital outputs 1-7** (valve control and calibration running) are **omitted**. The following figure shows an overview of the interfaces and logs.



4.2.3 Data storage

The data storage of analysis results is possible in non-custody-transfer measurement archives and in custody transfer archives in accordance with the DSFG standard; storage is no different than in the GC 9300 (*chapter 2.3 Data storage*)

4.2.4 Electrical connections of the GC 9310

The connections are made on the rear wall.

Connection assignment

Pin assignment

X1				
1	A1+	Not available		
2	A1-	Not available		
3	A2+	Not available		
4	A2-	Not available		
5	A3+	Not available		
6	A3-	Not available		
7	A4+	Not available		
8	A4-	Not available		
9	AL+	Alarm contact +	PGC: Alarm +	Contact open in the
10	AL-	Alarm contact -	PGC: Alarm -	event of an alarm

X2				
1	A5+	Not available		
2	A5-	Not available		
3	A6+	Not available		
4	A6-	Not available		
5	A7+	Not available		
6	A7-	Not available		
7	A8+	Digital output 8 +	Collective message for c	ligital outputs 9 - 12
8	A8-	Digital output 8 -	Collective message for c	ligital outputs 9 - 12
9	WA+	Warning contact +	PGC: Warning	Contact open in the
10	WA-	Warning contact -	PGC: Warning	event of a warning

X3			
1	A9+	Digital output 9 +	Limit value exceeded analog value 1*
2	A9-	Digital output 9 -	Limit value exceeded analog value 1*
3	A10+	Digital output 10 +	Limit value exceeded analog value 2*
4	A10-	Digital output 10 -	Limit value exceeded analog value 2*
5	A11+	Digital output 11 +	Limit value exceeded analog value 3*
6	A11-	Digital output 11 -	Limit value exceeded analog value 3*
7	A12+	Digital output 12 +	Limit value exceeded analog value 4*
8	A12-	Digital output 12 -	Limit value exceeded analog value 4*
9	E11+	Input 11 + (Note: pass	sive input, U _{max} = 30 V)
10	E11-	Input 11 – (Note: pass	sive input, U _{max} = 30 V)

* The analog values under "Specialties" can be monitored for limit values. Exceeding these limits leads to a warning or the setting of a signaling contact.

X4		
1	S1+	Current output 1 +
2	S1-	Current output 1 -
3	S2+	Current output 2 +
4	S2-	Current output 2 -
5	S3+	Current output 3 +
6	S3-	Current output 3 -
7	S4+	Current output 4 +
8	S4-	Current output 4 -
9	E12+	Input 12 + (Note: passive input, U _{max} = 30 V)
10	E12-	Input 12 – (Note: passive input, U _{max} = 30 V)

41

4 Commissioning

X5		Polarity of current inpu	ts depends on op	erating mode (active/passive).
1	l1e	Current input 1 f	reely selectable	
2	l1e	Current input 1 f	reely selectable	
3	l2e	Current input 2 f	reely selectable	
4	l2e	Current input 2 f	reely selectable	
5	l3e	Current input 3 (active - / passive	+)
6	l3e	Current input 3 (active + / passive	-)
7	t1+	Temperature input 1 st	upply ++	Room temperature
8	t1s	Temperature input 1 sense + Room temperature		Room temperature
9	t1s	Temperature input 1 sense - Room temperature		Room temperature
10	t1-	Temperature input 1 st	upply	Room temperature

X6		Polarity of current inputs depends on operating mode (active/passive).		
1	l4e	Current input 4 (active - / passive +)		
2	l4e	Current input 4 (active + / passive -)		
3	l5e	Current input 5 freely selectable		
4	l5e	Current input 5 freely selectable		
5	l6e	Current input 6 (active - / passive +)		
6	l6e	Current input 6 (active + / passive -)		
7	l7e	Current input 7 / Temperature input 2 supply ++		
8	l7e	Current input 7 / Temperature input 2 sense +		
9	l8e	Current input 8 / Temperature input 2 sense -		
10	l8e	Current input 8 / Temperature input 2 supply		

X7			
1	E1+	Digital input 1 +	freely selectable
2	E1-	Digital input 1 -	freely selectable
3	E2+	Digital input 2 +	freely selectable
4	E2-	Digital input 2 -	freely selectable
5	E3+	Digital input 3 +	freely selectable
6	E3-	Digital input 3 -	freely selectable
7	E4+	Digital input 4 +	freely selectable
8	E4-	Digital input 4 -	freely selectable
9	E5+	Digital input 5 +	freely selectable
10	E5-	Digital input 5 -	freely selectable

42

.....

43

X8]		
1	E6+	Digital input 6 +	freely selectable
2	E6-	Digital input 6 -	freely selectable
3	E7+	Digital input 7 +	freely selectable
4	E7-	Digital input 7 -	freely selectable
5	E8+	Digital input 8 +	freely selectable
6	E8-	Digital input 8 -	freely selectable
7	E9+	Digital input 9 +	freely selectable
8	E9-	Digital input 9 -	freely selectable
9	E10+	Digital input 10 +	freely selectable
10	E10-	Digital input 10 -	freely selectable

X9			
1	E13+	Digital input 13 +	freely selectable
2	E13-	Digital input 13 -	freely selectable
3	E14+	Digital input 14 +	freely selectable
4	E14-	Digital input 14 -	freely selectable
5	E15+	Digital input 15 +	freely selectable
6	E15-	Digital input 15 -	freely selectable
7	E16+	Digital input 16 +	freely selectable
8	E16-	Digital input 16 -	freely selectable
9	E17+	Digital input 17 +	freely selectable
10	E17-	Digital input 17 -	freely selectable

X10			
1	E13+	Digital input 18 +	freely selectable
2	E13-	Digital input 18 -	freely selectable
3	E14+	Digital input 19 +	freely selectable
4	E14-	Digital input 19 -	freely selectable
5	E15+	Digital input 20 +	freely selectable
6	E15-	Digital input 20 -	freely selectable
7		Not allocated	
8		Not allocated	
9		Not allocated	
10		Not allocated	

.....

.....

4 Commissioning

Power supply

X16	230 V/	230 V/AC version		24 V/DC version	
	L	100 – 230 V		Not allocated	
		Not allocated	+	+ 24 V	
	Ν	Neutral	-	- 24 V	
	PE	Potential equalization	PE	Potential equalization	

Network interfaces

X18:	Ethernet interface 1	For connection with the measuring element CP 4900
X19:	Ethernet interface 2	For connection of a PC or to a local network

Serial interfaces

X11:	COM 1	RS 232 / RS 485 *	Modbus RTU / Modbus ASCII
X12:	COM 2	RS 232	WAGO-IO / GPS 170
X13:	COM 3	RS 232 / RS 485 *	DSfG / Modbus RTU / Modbus ASCII / RMG-Bus
X14:	COM 4	RS 232 / RS 485 *	DSfG / RMG-Bus
X15:	COM 5	RS 232	Modbus RTU / Modbus ASCII
X37:	COM 6	RS 232 / RS 485 *	Modbus RTU / Modbus ASCII / RMG-Bus
X38:	COM 7	RS 232 / RS 485*	Modbus RTU / Modbus ASCII

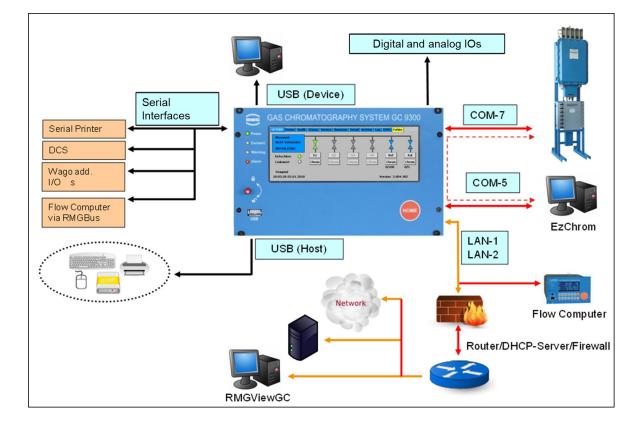
* configurable in the device with jumpers, delivery state in bold text.

44

4.3 Compatible mode GC9390

The compatible mode is an update for the existing PGC9000VCs with a new, own approval. This update is also possible for older PGC versions, please contact RMG if necessary. With the update there is generally no increase from e.g. the version PGC9000VC to PGC9300 connected, but this update contains essentially the following characteristics:

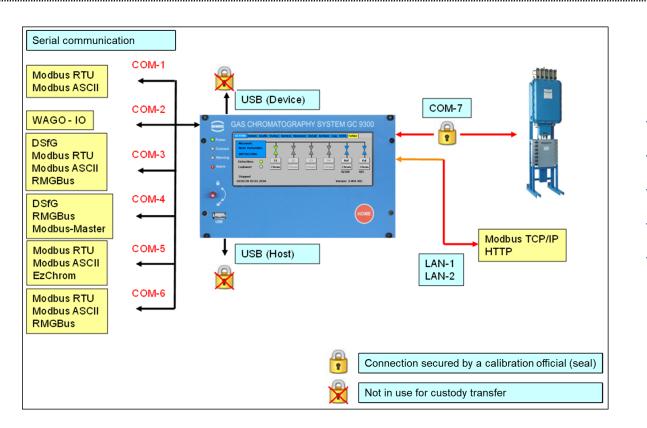
- Better operating comfort due to the touch screen
- A larger number of inputs and outputs:
 - 20 digital Inputs
 - o 12 digital Outputs
 - 8 analog Inputs
 - 4 analog Outputs
- Extended communication possibilities:
 - o 7 serial interfaces
 - (Modbus Master RTU, Modbus Master -ASCII, RMG -Bus, DSfG)
 - 2 ethernet interfaces
 - (Web browser, RMGView^{GC} [including remote control], DSfG -IP)
 - 2 USB for service and development
 - Internal achieving of the data (no MRG necessary):
 - GC archives and DSfG archives
 - Parameter log and event log
- Graphical functions:
 - o Chromatograms
 - o Trends


Note

When updating, check whether the type plate needs to be changed. Please contact the RMG service department.

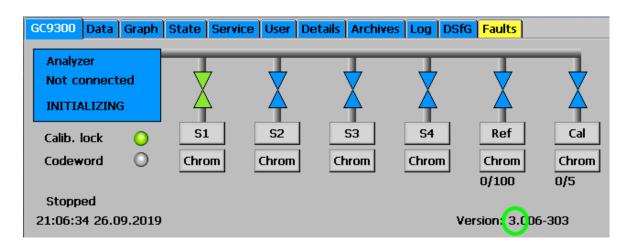
4 Commissioning

The next figure shows the various connection options to the GC9390 and communications with the GC9390.



The PGC measurement element is connected via COM 7 and a PC can be connected via COM 5. The LAN 1 and LAN 2 connections allow the connection of an ERZ2000 (ERZ2000-NG or ERZ2000-DI) and the integration into a PC network. Additionally, the RMGView^{GC} software can also be activated here, which allows convenient operation of the GC9390. These operating options are described in the corresponding manual of the RMGView^{GC} software.

Further connection possibilities can be seen in the illustration.


The next figure shows the various communication protocols. In particular, the figure shows whether there is a custody transfer connection secured by a seal or whether the connection is not possible in custody transfer mode, such as the USB port at the bottom left of the front panel, which is blocked by a seal sticker.

RMG

Furthermore, the different protocols are listed, which can be operated at the COM interfaces.

For the compatible mode a firmware version of the GC9390 of at least 3.xxx-3xx is necessary. You can read this status on the touch screen in the next figure in the lower left corner of the green circle.

Some further settings are required. In the **menu "Detail"** the COM 7 protocol must be set to CP for the measuring unit (see next figure in the green circle).

election	Name	Value	Unit
15 In- and Outputs	Baud rate	9600	
16 Serial ports	Data bits	8N1	
01 COM1	Protocol	СР	
	Modbus ID	1	
	Modbus text mode	ANSI	
04 COM4	Modbus byte order	GC	
	Modbus reg. offs.	0	
	 Modbus user list	OFF	
06 COM6 WinCE(C3)	MB telegram counter	0	
07 COM7 WinCE(C1)			
08 RMGBus testmode			

Next, enter the maximum measuring period of 600 seconds for the parameters.

GC9300 Data Graph State Ser	ives Log DSfG Faults	•	
Selection	Name	Value	Unit
🗐 14 Gas analyzer unit 🛛 🔺	Column operating	NG_5CB-HSA-X	
01 Parameter	Column enabling 1	ON	
02 State	Column enabling 2	ON	
- 03 Column 1	Column enabling 3	OFF	
04 Column 2	Chrom-file FTP	GET	
05 Column 3	Flush-Chrom-file FTP	GET	
06 Peaks	Simulation files Valve set value	NONE	
07 Sample gas pressure	Max. measurem.pe	600	s
- 08 Carrier gas I	Factor sampletime	1	
- 09 Carrier gas II			

The next step is to set the limit value for the deviation of the unnormalized sum to 5 %.

GC9300 Data Graph State Servi	ce User Details Archi	ves Log DSfG Faults	•
Selection	Name	Value	Unit
13 Calculation parameters	RT deviation	30.00	%
01 ISO-6976	Unnorm. sum deviat.	5.00	%
02 GPA-2172-09		\mathbf{U}	
03 Reference conditions			
04 Limits ana.,cal.			
- 05 Limits ana.			
06 Approved min value ar			
07 Approved max value a			
- 08 Set value ana. 🔍 👻			
	<u> </u>		

The lower and upper limit values for the calorific values Ho and Wobbe index Wo must be specified, too.

GC9300 Data Graph State Serv	ice User Details A	Archives Log DSfG	Faults
Selection	Name	Value	Unit 🔺
🗄 11 Components parameters 🔺	Hs set value	P.60	kWh/m3
12 Calibration parameters	Hs min. limit	7.00	kWh/m3
□ 13 Calculation parameters	Hs max. limit	14.00	kWh/m3
01 ISO-6976	Ws set value	b	kWh/m3
02 GPA-2172-09	Ws min. limit	8.00	kWh/m3
-03 Reference conditions	Ws max. limit	16.00	kWh/m3
	MZ set value	0.00	
<mark>04 Limits ana.</mark> ,cal.	MZ min. limit	60.00	
- <mark>05 Limits ana.</mark>	MZ max. limit	120.00	
- 06 Approved min value ar 🚽	SD set value	0.0000	kg/m3
	SD min. limit	0.7000	kg/m3 🥃
	CD may limit	1 0000	ka (m)

For the gas components nitrogen, carbon dioxide, propane, iso-butane, n-butane, neo-pentane, iso-pentane, n-pentane and the higher hydrocarbon compounds, that are summarized in C6+, the maximum possible concentrations are to be recorded.

GC9300 Data Graph State Serv	ice User Details	Archives Log DSfG	Faults
Selection	Name	Value	Unit 🔺
🗄 11 Components parameters 🔺	Hs set value	2.00	kWh/m3
12 Calibration parameters	Hs min. limit	7.00	kWh/m3
- 13 Calculation parameters	Hs max. limit	14.00	kWh/m3
01 ISO-6976	Ws set value	0.00	kWh/m3
02 GPA-2172-09	Ws min. limit	8.00	kWh/m3
03 Reference conditions	Ws max. limit	16.00	kWh/m3
	MZ set value	0.00	
O4 Limits ana.,cal.	MZ min. limit	60.00	
<mark>05 Limits ana.</mark>	MZ max. limit	120.00	
- 06 Approved min value ar 🗸	SD set value	0.0000	kg/m3
	SD min. limit	0.7000	kg/m3 🥃
	CD may limit	1 0000	ka (m)

The next step is to import the configuration of the measurement element. To do this, select "Import Multilevel (MIC.DAT)" in the "Service" menu and activate it with Execute (green circle).

Service (Frontkey)	Import multilevel (MIC.DAT)	Execute
User	No Function Calibrational commissioning Stop GC/start Windows explorer Reboot device Import multilevel (GC9300.RML)	Execute
Contrast setting	Import multilevel (MIC.DAT) Calc block-crcs Save original RT	L

Note								
With the use of the compatible mode some functions are no longer supported:								
 Use of oxygen sensor (Oxos), relevant in general for biogas applications Protocol RMG Bus - E (RMG Bus Coupler) Protocol for the data memory DS 900 Quantity Recorder MRG Special Gateways HP printer (direct connection) GC9310 gateway Automatic baking out 								

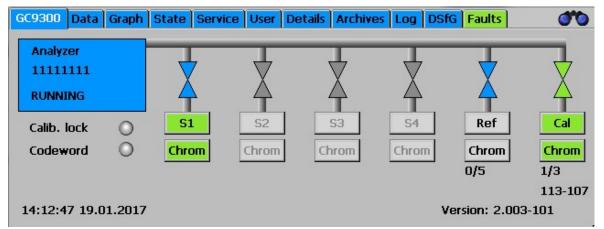
.....

.....

5 **Operation**

5.1 Operation on the touch screen

The touch screen enables simple operation via a graphic and largely selfexplanatory user interface. You can jump from any place in the menu to the start screen with the "HOME" button and then switch back and forth between the start screen and error screen.


Note

Operate the touch screen directly with your finger or use the supplied plastic stylus.

Never use hard or sharp objects such as screwdrivers or pens!

There is a risk of scratching or tearing the film of the touch screen.

5.1.1 Start screen

The start screen shows an overview of the current status of the PGC. The following are displayed:

- Error status with color-coding of the "Error" tab
- Ready indicator
 - o "READY" for "Measuring element is ready"

- "NOT READY" for "Measuring element is not ready"
- o "INITIALIZING" for "Measuring element starting up"
- o "FLUSHING" for "Measuring element flushing in progress"
- o "Running" the Measurement element is running
- Analysis status for gas streams S1 to S4, as well as reference gas and calibrating gas.
- Indication of whether the user lock or custody transfer switch is open.
- Date and time of the device
- Software version
- Analysis time: total time [minutes]
- Analysis time: sample time [minutes]

The symbols for the analysis status have the following meanings:

Green: Gas stream is active and switched onBlue: Gas stream is active and not switched onGray: Gas stream is inactiveBlack: valves fixed

Green color: The last analysis of this gas flow was error-free. Grey color and black text:

There is still no measurement result for this gas stream. Red color: The last analysis of this gas stream was faulty.

Grey color of the gas stream symbol and gray text mean that the gas stream is not available for the present version.

S1, Ref and Cal. are always available.

The individual screens are arranged like tabs. They represent the top level of the operating menu and are accessible via the buttons on the upper edge. The following screens are available:

Start screen
Results of the last analysis
Chromatograms and trends
Status displays, measuring element and digital IOs

5 Operation

53

RMG

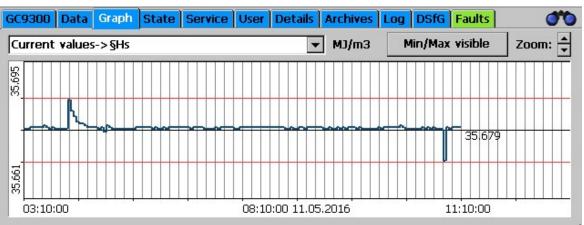
Service	Service functions
User	User-specific display
Detail	List of all measurements and parameters of the GC 9300
Archive	Display of the GC archive
Log	Display of the log books
DSfG	Display of the DSfG archive
Errors	Display of error messages with date and time

5.1.2 Data: Results of the last analysis

iC9300 Data Grapi	n State Se	rvice Use	r Details Archives Lo	g DSfG Faults	0
follow 🚽 <mark>11:08</mark>	:33 11.05.20	016	Stream-1		
ξHs	35.679	MJ/m3	§Nitrogen	10.983	mol%
WS	44.985	2012/02/02/02 02:00	§Methane	86.028	
§rho	0.8133	kg/m3	§Carbon Dioxide	1.545	mol%
d	0.6290		§Ethane	0.753	mol%
Hi	32.180	MJ/m3	§Propane	0.292	mol%
Wi	40.574	MJ/m3	§iso-Butane	0.050	mol%
Zn	0.997692		§n-Butane	0.099	mol%
Mz	0.000		§neo-Pentane	0.050	mol%
Unnormalized s	100.330		§iso-Pentane	0.099	mol%
			§n-Pentane	0.050	mol%

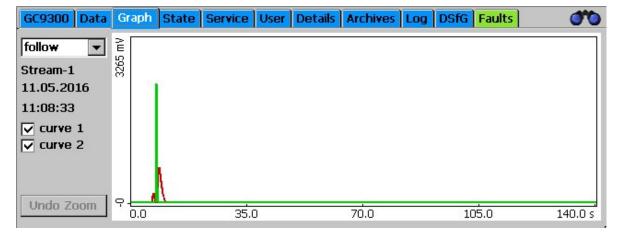
This screen displays the results of the last analysis, the molar content of the gas components in the right window and values such as calorific value, standard density and Wobbe index that calculated from the molar content in the left window. The methane number is also shown if its calculation is activated.

The setting for which analysis result is displayed is changed in the selection field at the top left.


successive	Result of the last analysis, regardless of gas stream or gas type.
Stream-1	Measuring gas from Gas Stream 1
Stream-2	Measuring gas from Gas Stream 2
Stream-3	Measuring gas from Gas Stream 3
Stream-4	Measuring gas from Gas Stream 4
REF gas	Last reference gas analysis
Cal. gas	Last calibration gas analysis

Note

54


The same result is obtained by activating (touching) the corresponding valve symbol in the "Home" screen.

5.1.3 Graph - Trends: Trend display of arbitrary values

The trends of arbitrary values are displayed the "Graph - Trends" screen. Recording takes place for 60 hours (2.5 days). An interval of 10 hours is always displayed.

Specification of which values are recorded should take place under "Archive and buffer - Trend". The Modbus address of the value to be recorded must be entered here.

5.1.4 Graph - Chroms: Chromatogram of the last analysis

 $\mathbf{R}N$

The chromatograms (signal curves) of the last analysis are displayed in the "Graph - Chroms" screen. As described under "Data", the gas stream and/or gas type is selected in the left selection field. There is a "Reject" selection point here for SKIP analyses for the purpose the flushing and the corresponding results were not assigned to a gas stream.

The measuring element may have 2 or 3 column modules. There is a curve for each of these modules and they can be displayed individually or together.

Zoom: The scale of the graph can be changed. Press the stylus on the light blue graphic field and draw a rectangle by moving the stylus. The area within the rectangle is then enlarged. To return to the original standard scale, click on "Undo zoom".

Note

For correct display, the "zoom" must first be reset after the measuring stream selection. Only then will the stream be displayed.

5.1.5 Status - Measuring element: Status displays, e.g. column temperature

Instrument State		Chann	el 1	Chann	el 2	Chann	el 3	
READY		Set	Cur	Set	Cur	Set	Cur	
Column Temp	°C	75.00	74.99	75.00	74.99	0.00	0.00	
Injector Temp	°C	70.00	70.00	70.00	70.03	0.00	0.00	
Column Pressure	bar	1.30	1.30	1.46	1.46	0.00	0.00	
		ОК		ОК		OFF		
-		Sample gas		Carrier gas-1		Carrier gas-2		
		1.0	0	4.7	8	0.00		

Variables such as pressure and temperature for Columns 1 to 3 and inlet pressures for measuring gas and carrier gas can be found here for the entries in the maintenance log. An additional, second carrier gas is used for some applications.

Note

The status menu is also displayed when the yellow field (measurement element status field) in the "Home" screen is touched.

56

5.1.6 Status – Dig. I/O: Status display of digital inputs and outputs

GC9300	Data	Graph	State	Service	User	Details	Archives	Log	DSfG	Faults		00
Warnii	ng Digi	tal Inpu	its			St	atus Digita	al Out	puts			
DI 1:	HE1_P	_MIN		C)	DO	1: Valve	Strea	m 1		0	
DI 2:	HE2_P	_MIN		C		DO DO	2: Valve	Strea	m 2		0	
DI 3:	CALGA	S_P_MI	N	C		DO	3: Valve	Strea	m 3		0	
DI 4:	REFGA	S_P_MII	N	C)	DO	4: Valve	Strea	m 4		0	
DI 5:	CALGA	S_T_MI	N	C		DO	5: Calibr	ation	valve		0	
DI 6:	REFGA	S_T_MI	N	C		_ DO	6: Ref. g	jas va	lve		0	
DI 7:	P_MAX	_S1		C)	DO	7: Calibr	ation	active		0	
DI 8:	P_MAX	_\$2		C)	DO	8: Comr	ion co	ontact	(DO 9-1	2)	
DI 9:	P_MAX	_\$3		C)	DO	9: Signa	lling o	utput	1	0	
DI 10:	P_MA)	(_S4		C)	DO	10: Signa	lling a	output	2	0	
DI 11:	x			C		DO DO	11: Signa	lling a	output	3	0	-

The statuses of digital inputs and outputs can be viewed here.

5.1.7 Service: Service functions

GC9300 Data Graph Stat	e Service User Details Archives Log DSfG	Faults 000
Service (Frontkey)		Execute
User		Execute
Contrast setting] Dark Light	
		Diagnostic

Very special settings can be made with the service functions or functions can be started:

RMG

Service (front switch)

The following functions can be selected and started by clicking on the "Execute" button when the custody transfer switch is open:

- a. Custody transfer commissioning
- b. Close GC / start Windows Explorer (Close the GC program)
- c. Restarting the device
- d. Download ERRORLOG.TXT from the measuring element.
- e. Multilevel import (Import column-specific parameters from the factory calibration)
- f. Calculate block CRCs (A test total for the custody transfer parameters is calculated for each menu item under "Details")
- g. Bake out the measuring element

Note

These functions a. to g. have major effects on the functionality and are thus reserved for RMG Service!

Under the supervision of a custodian, however, work such as baking out may be carried out.

The following functions can be selected by the "normal" user and started by clicking on the "Execute" button.

- Calibrate touch screen: (Calibration takes place according to the instructions of the operating system and is intended for the correct assignment of contact points for the graphic elements.)
- Contrast settings (Slide for adjustment of the screen contrast)

Position	Name	Value	Unit	
Current values	§Hs	35.679	MJ/m3	
Current values	ws	44.986	MJ/m3	
Current values	§rho	0.8133	kg/m3	
Current values	d	0.6290		
Current values	Hi	32.180	MJ/m3	
Current values	Wi	40.574	MJ/m3	
Current values	Zn	0.997692		
Current values	Mz	0.000		
Current values	Unnormalized	100.320		

5.1.8 User: User-specific display

The user screen offers the possibility of summarizing 20 arbitrary, frequently needed measurements for quick display.

Selection takes place in the "Detail" screen under "User - Screen". Then the corresponding Modbus addresses must be specified for each display value. These can be found by navigating in the "Detail" screen to the respective variable and clicking on it.

5.1.9 Detail: List of all measurements and parameters of the GC 9300

election	Name	Value	Unit
 O1 GC9300 mode O1 Multi-stream O2 Refgas O3 Calgas O4 Status O5 Times O2 Current values O3 Stream-1 values O4 Stream-2 values O5 Stream-3 values 	Mode of operation current oper. mode First cal. Err. free Erroneous cal. cycles First sample gas First ref. gas	AUTORUN READY YES O YES NO	

A list of all measurements, parameters and operating modes is provided here. The values are structured in 3 levels and can also be changed with this menu. Navigation to the two upper levels takes place in the left window, then the respective parameters and measurements are displayed in the right window.

When a parameter in the right window is clicked on, a window for changing the parameter appears:

Mode of operation	AUTORUN	-
Minimum Value	AUTORUN	
Maximum Value	STOP BASIC-CAL	Code
Modbus Address 1001	REGULAR-CAL Refgas	
AUTORUN: Normal analysis op STOP: Analyses are stopped	ode of the PGC 9300. Changes (eration, interrupted by automs or after service activity (red	

This window contains fields for entry of variable values or selection fields to change modes, depending on the type of parameter. In the example above, it is the operating mode that can be adjusted in this manner. In the yellow field below it, there is a brief description of the parameter, possible with additional information.

The "-" and "+" buttons are used to switch to the previous or next parameter in the current level.

If a variable value or text should be entered, a keyboard appears once the user clicks on the corresponding entry field:

0	
' 1 2 3 4 5 6 7 8 9 0 - = ←	Ins Post PgUp
Tabqwertyuiop[]\	Del End PgDn
Caps a s d f g h j k l ; ' Enter	Esc
Shift z x c v b n m , . / Shift	Ť
Ctrl Alt Ctrl	+++
Abbrechen OK	

GC9300 Data Graph	State Serv	vice Use	r De	tails Archives Log	DSfG Faults	00
all 💌 all Analys	ses 🔻	Info		+1 +10 +100	Newest	
11:14:29 11.05.2016	107268/10	7268		-1 -10 -100	Oldest 11	.05.2016 💌
Stream	S1			§Nitrogen	10.983	mol%
§Hs	35.679	MJ/m3		§Methane	86.029	mol%
ws	44.986	MJ/m3		§Carbon Dioxide	1.544	mol%
§rho	0.8133	kg/m3		§Ethane	0.753	mol%
d	0.6290			§Propane	0.292	mol%
Hi	32.180	MJ/m3		§iso-Butane	0.050	mol%
Wi	40.574	MJ/m3		§n-Butane	0.099	mol%
Zn	0.997692			§neo-Pentane	0.050	mol%
Mz	0.000			§iso-Pentane	0.099	mol%
Unnormalized sum	100.333			§n-Pentane	0.050	mol% 🔳

5.1.10 Archive: Display of archive entries

All archive entries can be viewed on this screen. A data record with gas components and calculated variables can be displayed on this screen. The desired data can be filtered as follows with the selection fields:

Left selection field:

- All All conducted analyses, including calibrating and reference gas
- S1 Gas Stream 1
- **S2** Gas Stream 2
- **S3** Gas Stream 3
- **S4** Gas Stream 4
- **Ref** Reference gas
- Cal Calibrating gas
- Skip Analyses that are not used

Middle selection field:

- Each analysis Display of individual analyses
- Hour Display of the hourly averages
- Day Display of the daily averages
- Month Display of the monthly averages

Right selection field:

•	Fe	ebru	iary	201	13	¥
S	м	Т	W	Т	F	S
27	28	29	30	31	1	2
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	1	2
З	4	5	6	7	8	9
То	day:	3/:	19/2	2013	3	

A calendar field appears in which the day of the archived data can be selected.

Then you can jump back one, 10 or 100 entries with the **buttons -100, -10, -1, +1, +10** and **+100**.

5.1.11 Log: Display of the log books

Time	Event		
09:19:41 02.05.2016	Alle Fehler gelöscht		Events
03:49:02 11.05.2016	+A Messwerk Timeout		<u>.</u>
3:49:41 11.05.2016	+H Messwerk Initializing		
3:49:41 11.05.2016	- A "Messwerk Timeout"		Тор
3:49:45 11.05.2016	- H Messwerk Initializing		
3:49:45 11.05.2016	+H Messwerk Flushing		Bottom
3:51:41 11.05.2016	+A Messzeit max.		
3:54:16 11.05.2016	- H Messwerk Flushing		
03:55:33 11.05.2016	- A Messzeit max.		
08:25:21 11.05.2016	Alle Fehler gelöscht		

The log books for the PGC are displayed on this screen. With the right selection field you can switch to:

Events: All events, such as incoming or outgoing alarms with date and time **Parameters:** All parameter changes with date and time

Note

Only parameters that are under the code word or the custody transfer switch are logged.

5.1.12	DSfG - Archive: Display of the DSfG archive
--------	---

GC9300 Data Graph	State S	ervice User Details Archives	Log DSfG	Faults	00
Stream-1 🔽 AG 23: Logbuch 💌					
Time	#	Event stream 1	§Hs	§rho	§Nitra 🔺
03:54:16 11.05.2016	140903	-Analyser Flushing	35.6781	0.813278	10.98
03:55:33 11.05.2016	140904	-Runtime exceeded	35.6781	0.813278	10.98
08:52:16 11.05.2016	140905	+Calibration lock	35.6784	0.813293	10.98
08:53:26 11.05.2016	140906	-Calibration lock	35.6787	0.813285	10.98
09:18:32 11.05.2016	140907	+Calibration lock	35.6789	0.813295	10.98
09:18:36 11.05.2016	140908	-Calibration lock	35.6789	0.813295	10.98
09:20:27 11.05.2016	140909	+Codeword	35.678	0.813306	10.98
09:50:27 11.05.2016	140910	-Codeword	35.6785	0.813295	10.98
11:14:29 11.05.2016	140911	+Codeword	35.6794	0.813302	10.98
	•				•

The individual DSfG archive groups can be viewed on the "DSfG - Archive" screen. The archive groups exist from Stream1 – Stream4.

5.1.13 DSfG - Delete: Deletion of the DSfG archive

\G 1	L: G485Mittelw1		•	Stream-1		▼ Clear
ŧ	AG Name	Stream-1	Stream-2	Stream-3	Stream-4	▲ Clear All
1	G485Mittelw1	625	606	603	601	
2	reserviert	0	0	0	0	
3	Vollanalyse1	198	6	6	6	
4	reserviert	0	0	0	0	
5	Mittelw/Std1	625	605	602	601	
6	Referenz.Gas.4	6	6	6	6	
7	Mittelw/Tag1	492	472	468	466	
8	Analysen	198	6	6	6	
9	Mittelw/Mon1	492	472	468	466	•

The individual DSfG archives can be deleted stream-by-stream on the "DSfG -Delete" screen. Therefore, the calibration switch must be opened and the calibration protection extinguishes. It must be reestablished by a calibration officer.

62

GC9300	Data	Graph State Service U	ser Details Archives Log DSfG Faults	00	
Status	No.	Time	Error	Delete	
					6

5.1.14 Errors: Display of error messages with date and time

All recently occurring and unacknowledged errors are displayed. Error messages that are no longer present (green) can be deleted here. Errors with a red background are alarms (A), which means the custody transfer measurement is faulty; errors with a yellow background are warnings (W), which means the custody transfer measurement has not been affected; notices (N) with a violet background are information that is unrelated to errors.

The tab is displayed in the color of the error with the highest priority with the display of a different screen:

Green: no
 Yellow: warning
 Red: alarm

5.2 Operation examples

5.2.1 Enter code number

When changing a large number of parameters, you must first enter the user code. The default setting is 99999999. Proceed as follows:

- I. Open the "Details" screen and scroll down in the window on the left until "User" appears.
- II. Click on the word "User", then on "Codeword" in the window on the right.
- III. Enter the user code using the displayed keyboard.
- IV. Confirm your input by clicking the "OK" button.
- V. Click the "Apply" button.
- VI. Click the "Back" button to exit the parameterization window.

5.2.2 Change operating mode

To change the operating mode, you must first enter the user code. Stay on the "Details" screen and proceed as follows:

- I. Scroll up to the top of the window on the left.
 - II. Click on "GC9300 Mode".
- III. Click on "Operating Mode" in the window on the right.
- IV. Select the desired operating mode in the selection field.
- V. Click the "Apply" button.
- VI. Click the "Back" button to exit the parameterization window.

The following operating modes are available:

AUTORUN	Normal analysis operation. One analysis is performed after another, interrupted by automatic calibration.
STOP	Measurement and calibration operation are disabled.
BASIC-CAL	Basic calibration for startup and for RMG service. Basic calibration may not be carried out during normal analysis operation.
NORM-CAL	Manual calibration, which can be started at any time and has the same effect as automatic calibration and also takes 30 minutes. AUTORUN is activated automat- ically after calibration.
REF-GAS	Reference gas analysis, i.e. the reference input for the analysis of test gas or a gas sample is connected. The PGC remains in this mode until it is changed again or the maximum number of reference gas analysis are done.

After the operating mode is changed, the analysis or calibration currently being performed is ended and switchover takes place directly afterwards.

5.2.3 Program current output

To program a current output, the user code must be entered first. Remain in the "Detail" screen and proceed as follows:

- I. To change the operating mode, you must first enter the user code. Stay on the "Details" screen and proceed as follows:
- II. On the "Details" screen, navigate to the measured value that you wish to output via the current output.
- III. In the window on the right, click on the name of the measured value to read the Modbus address on the parameterization screen. Click "Back" to exit the parameterization screen.
- IV. In the window on the left, scroll to "Inputs and Outputs" and click on it.
- V. Scroll down and select one of the four current outputs.
- VI. In the window on the right, click on "Operating Mode" and select the desired operating mode of the current output, e.g. 4-20 mA.
- VII. In the window on the right, click on "Select" and enter the Modbus address of the measured value to be output under "Select" on the parameterization screen.
- VIII. Finally, enter the limits. "Phys. Min. Value" is the measured value for which the minimum current (0 or 4 mA) is to be output, while "Phys. Max. Value" is the measured value for the maximum current (20 mA).
- IX. The limit value violation should be set to "WARNING" provided the current output is not being used for custody transfer.

5.2.4 Read values for maintenance log entry

The following values must be read out for the entry in the Maintenance Book:

- I. Carrier gas pressure
- II. Measuring gas pressure
- III. Column temperature
- IV. Column pressure

These values can be found on the "Details" screen:

- I. Select in the left window "Measuring Element/Pressure of Gas for Analysis". The measuring gas pressure is displayed on the right in the first line.
- II. In the window on the left, select "Measuring Element/Carrier Gas-I". The carrier gas pressure is displayed on the right in the first line.
- III. In the window on the left, select "Measuring Element/Channel-I". The pressure and temperature for column 1 are displayed in the window on the right.

5 (Operation
-----	-----------

IV.	In "Measuring Element/Channel-2" and "Measuring Element/Channel-3" you
	can find the values for other columns.

It is easier to read these values if the yellow field (movement status field) in the "Home" screen is touched.

66

5.3 Bake-out

After a longer service interval or if there is a possibility that impurities from undefined gas mixtures may have entered the measuring element, it is recommended that the measuring element is baked-out in order to remove these impurities.

Note

If necessary, consult RMG's service department before starting a heating process.

As of version V1.610-081, there is a new *chapter 14.10 Bake-out* under the *chapter 14 measurement element*.

The duration of the heating process can be entered here. This value is below the user code word and can be between 180 minutes and 1080 minutes. By default, this value is set to 180 minutes. The following figure shows the matrix from the user's point of view.

GC9300 Data Graph State Service User Details Archives Log DSfG Faults					
Selection		Name	Value	Unit 🔺	
01 Parameter		Bake out duration	180	min	
02 State		HSA temperature	120.00	°C	
- 03 Column 1		5CB temperature	120.00	°C	
04 Column 2		MS temperature	150.00	°C	
05 Column 3		HSA column press.	1.50	bar	
06 Peaks		5CB column press.	1.50	bar 🔰	
		MS column press.	1.50	bar 📃	
07 Sample gas pressure		Download meassure	NO		
- 08 Carrier gas I		Upload meassure m	NO		
- 09 Carrier gas II		Measure methode f	0		
10 Bake out		Measure meth. HSA	0.00	℃ 🚽	
		Moscure meth ECD	0.00	or 🛄	

In the *chapter 14.10 Bake-out* there are further matrix elements which are not visible in the user profile *USER*. These additional matrix elements are only visible to the service.

Before a heating process can be started, the current measuring method from the measuring element must be saved in the GC9300 controller. This can be done using the matrix element *Upload measurement method* in *chapter 14.10 Bake-out*.

67

GC9300 Data Graph State Service User Details Archives Log DSfG Faults Selection Name Value Unit . 01 Parameter Bake out duration * 180 min HSA temperature °C 02 State 120.00 5CB temperature °C 120.00 03 Column 1 MS temperature 150.00 °C 04 Column 2 HSA column press. 1.50bar 05 Column 3 5CB column press. 1.50bar 06 Peaks MS column press. 1.50bar 07 Sample gas pressure Download meassure... NO 08 Carrier gas I Upload meassure m... NO 09 Carrier gas II Measure methode f... 0 Measure meth. HSA... 0.00 °C 10 Bake out -Measure meth. 5CB... 0.00 °C Measure meth. MS ... 0.00 °C Measure meth. HSA... 0.00 bar Measure meth. 5CB... 0.00 bar \mathbf{T} Measure meth. MS ... 0.00 bar

The following figure shows the matrix from a developer's point of view.

The service functions Bake-out the measuring element can be started in the service dialog. The calibration switch must be open in order to perform a service function.

GC9300 Data Graph State	Service User Details Archives Log DSfG Faults
Service (Frontkey)	Download ERRORLOG.TXT from analyz Execute
User Contrast setting	No Function Calibrational commissioning Stop GC/start Windows explorer Reboot device Calc block-crcs Import multilevel
	Download ERRORLOG.TXT from analyzer Analyser bake out Diagnostic

To start the bake-out process, a number of prerequisites must be met:

- The parameters of the measurement method for the connected measuring element must be stored in the GC9300 controller. (Matrix element: Upload measurement method)
- The measuring element must be equipped with the column arrangement HSA 5CB MS.
- The operating mode must be set to STOP.

- The carrier gas pressure must be correct. (For PGC9304 carrier gas 1 and -2.)
- The calibration switch must be open in order to start the service function.

In addition, the settings of the heating procedure must be confirmed:

- column temperatures
- column pressures
- Total duration of the bake-out process

Analyzer no.:	17486023 🛛 🤘	HSA bake out temperature:	160.00	HSA col. temperature act.:	80.03
Analyzer type:	HSA-SCB-MS	SCB bake out temperature:	180.00	SCB col. temperature act.:	69.99
Operating	STOP 😼	MS bake out temperature:	180.00	MS col. temperature act.:	79.98
		HSA bake out pressure:	1.25	HSA col. pressure act.:	1.26
Carrier gas-1:	5.47 💙	5CB bake out pressure:	1.15	SCB col. pressure act.:	1.16
Carrier gas-2:	0.00 🔰	MS bake out pressure:	1.40	MS col. pressure act.	1.41
		Duration total (min):	600	Duration act. (min):	0

Note

After the bake-out process has been started, the dialog can no longer be exited.

During the bake-out process, this dialog box contains status indicators that allow for proper monitoring of the process:

- Current column temperatures
- Current column pressures
- Remaining time of the heating process
- Progress bar
- Status display ("Bake out", "Cool down" and "Equilibrate")

The heating process starts as soon as "Start bake-out process" has been confirmed twice.

The orange button can be used to stop the heating process. To abort the bake-out process, "Abort Bake-out" must be confirmed twice.

			HSA bake out temperature:	160.00	HSA col. temperature act.:	96.44
Analyzer type:	HSA-SCB-MS	1	SCB bake out temperature:	180.00	SCB col. temperature act.:	82.93
Operating	STOP	1	MS bake out temperature:	180.00	MS col. temperature act.:	92,10
		-	HSA bake out pressure:	1.25	HSA col. pressure act.:	1.26
Carrier gas-1:	5.47		5CB bake out pressure:	1.15	SCB col. pressure act.:	1.16
Carrier gas-2:	0.00	V	MS bake out pressure:	1.40	MS col. pressure act.:	1.42
			Duration total (min):	600	Duration act. (min):	599

After termination of the heating process, cooling is started immediately. Now no more actions and interventions in the cooling process are possible and the cooling time (always 1 hour) has to be waited.

Analyzer no.: Analyzer type: Operating Carrier gas-1: Carrier gas-2:	17486023 H5A-5CB-M5 STOP 5.47 0.00	HSA bake out temperature: SCB bake out temperature: MS bake out temperature: HSA bake out pressure; SCB bake out pressure: MS bake out pressure:	10000000	HSA col. temperature act.: 5CB col. temperature act.: MS col. temperature act.: HSA col. pressure act.: 5CB col. pressure act.: MS col. pressure act.:	96.87 85.99 91.37 1.26 1.16 1.42
0%	m settings:	Duration total (min):	600	Duration act. (min):	59

After cooling has been completed, the dialog box can be left again, regardless of whether the heating process was interrupted early or whether the heating process was successfully completed.

0% Confirm	n settings:	Start bake out		Close window	100%
		Duration total (min):	600	Duration act. (min):	0
Carrier gas-2:	0.00 📎	MS bake out pressure:	1.40	MS col. pressure act.:	1.40
Carrier gas-1:	5.47 💙	SCB bake out pressure:	1.15	SCB col. pressure act.:	1.15
		HSA bake out pressure:	1.25	HSA col. pressure act.:	1.25
Operating	STOP 🔰	MS bake out temperature:	180.00	MS col. temperature act.:	80.08
Analyzer type:	HSA-5CB-MS	SCB bake out temperature:	180.00	5CB col. temperature act.:	69.97
Analyzer no.:	17486023 🛛 💙	HSA bake out temperature:	160.00	HSA col. temperature act.:	79.98
Conditions (fulfil	led)			Status (Finished) ————	

All actions of the heating process were logged into the event log (the timestamps do not correspond to a real process).

Time	Event	
00:34:23 18.05.2018	+H "MW Setzen Messmeth. OK"	 Events
00:34:23 18.05.2018	- H "Abkühlen"	
00:34:23 18.05.2018	+H "Equilibrieren"	
01:04:24 18.05.2018	- H "Equilibrieren"	Тор
09:51:17 18.05.2018	+H "Bake out"	тор
09:52:24 18.05.2018	- H "Bake out"	Bottom
09:52:24 18.05.2018	+H "Cool down"	
10:22:27 18.05.2018	- H "Cool down"	
10:22:27 18.05.2018	+H "Equilibrieren"	
10:52:29 18.05.2018	- H "Equilibrieren"	

5.4 Retention time monitoring

The GC9300 controller offers the monitoring of the retention time of nitrogen and generates a warning if a change is too large.

The check takes place backdated to the time of the **10.15.02 Startup Delay** (60 days in the example below). The time of the **10.15.03 Period for summation** (10 days) before the Startup Delay and the same period before are compared to each other.

Based on the times selected in the example here, the average retention times for the period from day 41 to 50 is compared with the average retention time for the period from day 51 to 60. These times may differ only very slightly from one another.

Note

Empirical investigations have shown that the relative shift for the retention times should be less then approximately -0.005. This value is stored in coordinate 10.15.04 Nitrogen deviation.

If the shift is higher, a warning is generated.

Please contact the RMG service department.

GC9300 Data Graph State Service User Details Archives Log DSfG Faults						
Selection		Name	Value	Unit		
Selection Dew point pressure 01 Dew point pressure 02 Dew point temp. 03 COS 04 H2S 05 Mercaptane 06 Hydrocarbon dew poin 07 Add. monitoring 1 08 Add. monitoring 2 09 Add. monitoring 3 10 Add. monitoring 4 11 Add. monitoring 5 12 Sum 13 Fixed components 14 DSfG constants 15 RT monitoring	•	Name monitoring Startup Delay Period for summation Nitrogen deviation current deviation	OFF 60 10	Unit		
庄 11 Komponenten Parameter	•					

- 1. Monitoring is activated in coordinate **10.15.01 Monitoring**.
- In coordinate 10.15.02 Startup Delay, the time [in days] is set in which the monitoring does not issue a warning.
- 3. Coordinate **10.15.03** Period for summation gives the time [in days] during which the measured retention times of the calibration runs are summed up.
- 4. The coordinate **10.15.04 Nitrogen deviation** shows the value against which the calculated deviation is checked.
- 5. Coordinate 10.15.05 actual deviation shows the current deviation.

5.5 View and read archive via internet browser

If there is a TCP/IP connection between a PC and the analytical computer, the archives can be read out with any Internet Browser and the archive content displayed. The archive content can be saved in the file formats html and csv. The abbreviation "csv" stands for "character-separated values", a format that can be read by MS Excel.

To get access to the archive data you have to enter a username and a password. The username is always "gcuser" and the password can be set under "22: Archives, Storage/Web Archive Password".

Data is read out and viewed from the following window:

N.	Reliab	le Measurement of Gas	RMG
		GC9300 - Archives & Logs	
	Period:	from: 18.01.2017 14:00:00 to: 19.01.2017 14:00:00	
	Archives/Logs:	Individual analysis-Archive	
	Archivgroup:	-	
	Stream:	S1 •	
	Туре:	HTML	
	CSV-Separator:	-	
	Decimalpoint:	. (Point)	
		Get Archive/Log	

5.6 Operation with RMGView^{GC}

You may find all required information in the manual of RMGView^{GC}. This manual can be downloaded from the RMG internet homepage:

www.rmg.com

5.7 Error messages

Error messages are categorized as follows:

Α	Alarms	Custody transfer measurement faults	
W	Warnings	Non-custody transfer function faults	
н	Hints Mess	ages without faults	

Alarm numbers

Intern	DSfG	Туре	englisch	Description
1	7001	E	Read / write config	Conflict in assignment of parameters / software
2	7002	E	Load signature key	Signature key is loaded
3	424		ADC out of Range	Collective fault signal AD converter for current inputs 1 to 8
8	407		Reboot GC9300	Intermittent power failure
9	407		Reboot GC9300 (BIOS)	Bios triggered an automatic restart
10	7010		T1 open circuit	Line break Room temperature measurement
11	7011		T2 open circuit	Line break 2nd temperature measurement
12	7012		Temp1 alarm limits	Error during room temperature measurement
13	7013		Temp2 alarm limits	Error in 2nd temperature measurement
14	621		Outp current-1 alarm limits	Current output 1: Measured value outside the limit values
15	622	E	Outp current-2 alarm limits	Current output 2: Measured value outside the limit values
16	623	E	Outp current-3 alarm limits	Current output 3: Measured value outside the limit values
17	624	E	Outp current-4 alarm limits	Current output 4: Measured value outside the limit values
20	7020	E	ISO conditions	Input variables for ISO 6976 outside permissible limits
21	7021		GPA conditions	Input size for GPA 2172-96 except permissible limits
	7030		Nitrogen Min/Max	Ana. & Cal: Nitrogen outside user limits
31	7031		Methane Min/Max	Ana. & Cal: Methane outside user limits
32	7032		Carbon Dioxide Min/Max	Ana. & Cal: Carbon dioxide outside user limits
33	7033		Ethane Min/Max	Ana. & Cal: Ethan outside user limits
34	7034		Propane Min/Max	Ana. & Cal: Propane outside user limits
35	7035		iso-Butane Min/Max	Ana. & Cal: iso-butane outside user limits
36	7036		n-Butane Min/Max	Ana. & Cal: n-butane outside user limits
37	7037		neo-Pentane Min/Max	Ana. & Cal: neo-pentane outside user limits
38	7038		iso-Pentane Min/Max	Ana. & Cal: iso-pentane outside user limits
39	7039		n-Pentane Min/Max	Ana. & Cal: n-pentane outside user limits
40	7040		C6+ Min/Max	Ana. & Cal: C6+ outside user limits
41	7041		n-Hexane Min/Max	Ana. & Cal: n-Hexan outside user limits
42	7042		n-Heptane Min/Max	Ana. & Cal: n-heptane outside user limits
43	7043		n-Octane Min/Max	Ana. & Cal: n-octane outside user limits
44	7044		n-Nonane Min/Max	Ana. & Cal: n-Nonan outside user limits
45	7045		Oxygen Min/Max	Ana. & Cal: Oxygen outside user limits
46	7046	E	Helium Min/Max	Ana. & Cal: Helium outside user limits

.....

47	7047	_	1.1. 1. N.4. /N.4.	
47	7047		Hydrogen Min/Max	Ana. & Cal: Hydrogen outside user limits
	7048		Argon Min/Max	Ana. & Cal: Argon outside user limits
49	7049		Reserve Min/Max	(Reserve for future functions)
	7050		Gas analyzer timeout	Connection to measuring unit interrupted
51	7051 I		MAC LAN2 is default	MAC address of the LAN2 interface not set
	7052 I		Runtime exceeded	Default maximum analysis duration exceeded
53	7053 I		Wrong analyzer unit	Incorrect movement connected
54	7054 I		empty analysis	Archive entry without values, for general error display
60	7060 I		Wago AO1 alarm limits	Alarm limit values for Wago analog output 1 violated
61	7061 I		Wago AO2 alarm limits	Alarm limit values for Wago analog output 2 violated
62	7062 I		Wago AO3 alarm limits	Alarm limit values for Wago analog output 3 violated
63	7063 I		Wago AO4 alarm limits	Alarm limit values for Wago analog output 4 violated
64	7064 I		Wago AO5 alarm limits	Alarm limit values for Wago analog output 5 violated
65	7065 I	E	Wago AO6 alarm limits	Alarm limit values for Wago analog output 6 violated
66	7066 I	E	Wago AO7 alarm limits	Alarm limit values for Wago analog output 7 violated
67	7067	E	Wago AO8 alarm limits	Alarm limit values for Wago analog output 8 violated
68	7068 I	E	Wago AO9 alarm limits	Alarm limit values for Wago analog output 9 violated
69			Wago AO10 alarm limits	Alarm limit values for Wago analog output 10 violated
70	7070 I		Wago AO11 alarm limits	Alarm limit values for Wago analog output 11 violated
71	7071		Wago AO12 alarm limits	Alarm limit values for Wago analog output 12 violated
72	7072		Wago AO13 alarm limits	Alarm limit values for Wago analog output 13 violated
73	7073		Wago AO14 alarm limits	Alarm limit values for Wago analog output 10 violated
74	7074		Wago AO15 alarm limits	Alarm limit values for Wago analog output 15 violated
75	7075		Wago AO16 alarm limits	Alarm limit values for Wago analog output 16 violated
80	7080		Nitrogen §Min/Max	Analysis: Nitrogen content outside permissible limits
81	7081		Methane §Min/Max	Analysis: Methane content outside permissible limits
82	7082		Carbon Dioxide §Min/Max	Analysis: CO2 content outside permissible limits
83	7083			
	7083		Ethane §Min/Max	Analysis: Ethane content outside permissible limits
84			Propane §Min/Max	Analysis: Propane content outside permissible limits
85	7085		iso-Butane §Min/Max	Analysis: i-butane content outside permissible limits
86	7086		n-Butane §Min/Max	Analysis: n-butane content outside permissible limits
87	7087		neo-Pentane §Min/Max	Analysis: Neopentane content outside permissible limits
88	7088 I	E	iso-Pentane §Min/Max	Analysis: i-pentane content outside permissible limits
89	7089 I	E	n-Pentane §Min/Max	Analysis: n-pentane content outside permissible lim- its
90	7090 I	E	C6+ §Min/Max	Analysis: C6+ fraction outside permissible limits
	7091 I		n-Hexane §Min/Max	Analysis: n-hexane content outside permissible limits
92	7092		n-Heptane §Min/Max	Analysis: n-heptane content outside permissible lim- its
93	7093	Ε	n-Octane §Min/Max	Analysis: n-octane content outside permissible limits
94	7094		n-Nonane §Min/Max	Analysis: n-Nonan content outside permissible limits
95			Oxygen §Min/Max	Analysis: Oxygen content outside permissible limits
96	7096		Helium §Min/Max	Analysis: Helium content outside permissible limits
97	7097		Hydrogen §Min/Max	Analysis: Hydrogen content outside permissible limits
98	7098		Argon §Min/Max	Analysis: Argon content outside permissible limits
99			Reserve §Min/Max	(Reserve for future functions)
100	609 I		Cal: retentions time	Calibration: at least one retention time outside per- missible limits
101	610 I	E	Response factor	Calibration: at least one response factor outside permissible limits
102	608 I	E	Cal: unnorm. Sum	Calibration: unnormalized sum outside permissible limits

RMG

5 Operation

.....

103	7103	E	Cal: total area	Calibration: Total area outside permissible limits
104			Cal: Concentration	Calibration: Collective signal for limit value violation
		-		of components
105	7105	E	Cal: Hs limit	Calibration: Calorific value outside permissible limits
106			Cal: rho limit	Calibration: Standard density outside permissible
				limits
107	7107	E	Cal: CO2 limit	Calibration: CO2 content outside permissible limits
120			Ana: retentions time	Analysis: at least one retention time outside permis-
				sible limits
121	7121	E	Ana: unnorm. Sum	Analysis: unnormalized sum of permissible limits
				other than permissible limits
122	7122	E	Ana: Concentration	Analysis: Collective message for limit value violation
				of components
123			Ana: Hs min/max	Analysis: Calorific value outside permissible limits
124			Ana: Ws min/max	Analysis: Wobbe index outside permissible limits
125			Ana: Mz min/max	Analysis: Methane number outside permissible limits
126			Ana: d min/max	Analysis: Density ratio outside permissible limits
127			Ana: rho min/max	Analysis: standard density outside permissible limits
130			Pres. meas. gas at injection	Sample gas pressure outside permissible limits
131	7131	E	Pres. carrier gas I	Carrier gas pressure 1 (helium) outside permissible
105	7400	_		limits
132	7132	F	Pres. carrier gas II	Carrier gas pressure 2 (argon) outside permissible
100	7400	_		limits
133	7133	E	-	Analysis not started due to measuring gas pressure
404	7404	Г	gas	error
134			max pres. carrier gas I	Pressure of the 1st carrier gas too high
135		-	max pres. carrier gas II	Pressure of the 2nd carrier gas too high
149			Method not found	Method file could not be opened (GC9390 only)
150	/150	vv	Cal: Concentration	Calibration: Collective signal for limit value violation of components
151	7151	۱۸/	Ana: Concentration	Analysis: Collective Notification
152			Temp1 warning limits	Error during room temperature measurement
152			Temp2 warning limits	(Reserve for future functions)
153			outp current-1 warning limits	Current output 1: Measured value outside the limit
134	1134	vv	outp current- r warning innits	values
155	7155	W	outp current-2 warning limits	Current output 2: Measured value outside the limit
100	1100	**		values
156	7156	W	outp current-3 warning limits	Current output 3: Measured value outside the limit
100	1100		outpourone o warning innes	values
157	7157	W	outp current-4 warning limits	Current output 4: Measured value outside the limit
				values
158	7158	W	#DiWarnText 0	Warning message for digital input. 1, text pro-
				grammable
159	7159	W	#DiWarnText_1	Warning message for digital input. 2, text pro-
			_	grammable
160	7160	W	#DiWarnText_2	Warning message for digital input. 3, text pro-
				grammable
161	7161	W	#DiWarnText_3	Warning message for digital input. 4, text pro-
				grammable
162	7162	W	#DiWarnText_4	Warning message for digital input. 5, text pro-
				grammable
163	7163	W	#DiWarnText_5	Warning message for digital input. 6, text pro-
1				grammable

.....

.....

164	7164	W	#DiWarnText_6	Warning message for digital input. 7, text pro- grammable
165	7165	W	#DiWarnText_7	Warning message for digital input. 8, text pro- grammable
166	7166	W	#DiWarnText_8	Warning message for digital input. 9, text pro- grammable
167	7167	W	#DiWarnText_9	Warning message for digital input. 10, text pro- grammable
168	7168	W	#DiWarnText_10	Warning message for digital input. 11, text pro- grammable
169	7169	W	#DiWarnText_11	Warning message for digital input. 12, text pro- grammable
170	7170	W	#DiWarnText_12	Warning message for digital input. 13, text pro- grammable
171	7171	W	#DiWarnText_13	Warning message for digital input. 14, text pro- grammable
172	7172	W	#DiWarnText_14	Warning message for digital input. 15, text pro- grammable
173	7173	W	#DiWarnText_15	Warning message for digital input. 16, text pro- grammable
174	7174	W	#DiWarnText_16	Warning message for digital input. 17, text pro- grammable
175	7175	W	#DiWarnText_17	Warning message for digital input. 18, text pro- grammable
176	7176	W	#DiWarnText_18	Warning message for digital input. 19, text pro- grammable
177	7177	W	#DiWarnText_19	Warning message for digital input. 20, text pro- grammable
179	_	W	Limit H2S-Sum	Hydrogen sulphide value (AI) above permissible limit
180	7180		Nitrogen §Min/Max	Analysis: Nitrogen content outside permissible limits
181	7181		Methane §Min/Max	Analysis: Methane content outside permissible limits
182	7182		Carbon Dioxide §Min/Max	Analysis: CO2 content outside permissible limits
183	7183		Ethane §Min/Max	Analysis: Ethane content outside permissible limits
184	7184		Propane §Min/Max	Analysis: Propane content outside permissible limits
185	7185		iso-Butane §Min/Max	Analysis: i-butane content outside permissible limits
186	7186		n-Butane §Min/Max	Analysis: n-butane content outside permissible limits
187	7187		neo-Pentane §Min/Max	Analysis: Neopentane content outside permissible limits
188	7188	W	iso-Pentane §Min/Max	Analysis: i-pentane content outside permissible limits
189	7189	W	n-Pentane §Min/Max	Analysis: n-pentane content outside permissible lim- its
190	7190	W	C6+ §Min/Max	Analysis: C6+ fraction outside permissible limits
191	7191	W	n-Hexane §Min/Max	Analysis: n-hexane content outside permissible limits
192	7192	W	n-Heptane §Min/Max	Analysis: n-heptane content outside permissible lim- its
193	7193	W	n-Octane §Min/Max	Analysis: n-octane content outside permissible limits
194	7194		n-Nonane §Min/Max	Analysis: n-Nonan content outside permissible limits
195	7195		Oxygen §Min/Max	Analysis: Oxygen content outside permissible limits
196	7196		Helium §Min/Max	Analysis: Helium content outside permissible limits
197	7197		Hydrogen §Min/Max	Analysis: Hydrogen content outside permissible limits
198	7198		Argon §Min/Max	Analysis: Argon content outside permissible limits
199	7199		Reserve §Min/Max	(Reserve for future functions)
200	7200		Pres. meas. gas	Sample gas pressure outside permissible limits
201	7201		Gas analyzer TO	Movement does not respond
				· · · · ·

5 Operation

.....

203	7203	W	Too many peaks	Chromatogram contains too many peaks
204	7204		Wago AO1 warning limits	Warning limit values for Wago analog output 1 violat-
204	1204	••		ed
205	7205	W	Wago AO2 warning limits	Warning limit values for Wago analog output 2 violat- ed
206	7206	W	Wago AO3 warning limits	Warning limit values for Wago analog output 3 violat- ed
207	7207	W	Wago AO4 warning limits	Warning limit values for Wago analog output 4 violat- ed
208	7208	W	Wago AO5 warning limits	Warning limit values for Wago analog output 5 violat- ed
209	7209	W	Wago AO6 warning limits	Warning limit values for Wago analog output 6 violat- ed
210	7210	W	Wago AO7 warning limits	Warning limit values for Wago analog output 7 violat- ed
211	7211	W	Wago AO8 warning limits	Warning limit values for Wago analog output 8 violat- ed
212	7212		Wago AO9 warning limits	Warning limit values for Wago analog output 9 violat- ed
213	7213		Wago AO10 warning limits	Warning limit values for Wago analog output 10 vio- lated
214	7214		Wago AO11 warning limits	Warning limit values for Wago analog output 11 vio- lated
215	7215	W	Wago AO12 warning limits	Warning limit values for Wago analog output 12 vio- lated
216	7216	W	Wago AO13 warning limits	Warning limit values for Wago analog output 13 vio- lated
217	7217	W	Wago AO14 warning limits	Warning limit values for Wago analog output 14 vio- lated
218	7218		Wago AO15 warning limits	Warning limit values for Wago analog output 15 vio- lated
219	7219		Wago AO16 warning limits	Warning limit values for Wago analog output 16 vio- lated
220	7220	Н	MZ Input values	Incorrect input values for methane number calcula- tion
221	7221	Н	Valve fixed	Mode with fixed valves (service only) is set
222	-	Н	Test mode	PGC runs in test mode! No custody transfer operati- on!
223	7223	Н	Cal: Set values	Sum of components in calibration gas not 100%.
224	7224		Printer not ready	Printer is not ready
225	7225		EVars CRC	New checksum (CRC) for custody transfer parame- ters
227	7227	Н	Testmode digital outputs	Test mode for digital outputs is active
228	7228		Calib. val. ferroram(CRC)	Monitoring of calibration values for inputs and out- puts
229	7229	Н	Calib. val. ferroram(version)	Monitoring of the version number for the structure of the inputs and outputs
230	800	Н	Calibration lock	Calibration switch open
231	801		Codeword	Password entered
232	810		Old Date & Time	Last DSfG time before change
233	811		New Date & Time	First DSfG time after change
234	802		Revision	Calibration or reference gas is measured
235	7235		Write Simufile	Simulation files are written to SD card
236	7236		Calibrational commissioning	A custody transfer commissioning is in progress.

79

.....

.....

.....

237	7237	Н	Ext. test gas	Gas composition measurement external test gas	
238			Waiting time until start	Waiting time until the measurement starts	
240	7240	Н	Multilevel import ok	Import of multilevel coefficients successful	
241	7241	Н	Multilevel import not ok	Import of multilevel coefficients not successful	
242	7242	Н	Analyzer Initializing	Measuring unit initialized	
243	7243	Н	Analyzer Flushing	Measuring element is flushed	
247	760	Н	Analyzer calibrating	Measuring mechanism is calibrated	
250	7250	Н	Chromatogram (FTP)	Note/error when fetching the chromatogram from the	
				measuring mechanism	
251	7251	Н	FlushChromatogram (FTP)	Note/error when fetching the first chromatogram after rinsing	
252	7252	н	Write chromatogram	Note/error when writing the chromatogram to the SD card	
253	7253	Н	Write flushchrom	Note/Error with write. 1. chromatogram after rinsing on the SD card	
260	7260	н	Bake out	Bakeout process running	
261	7261		Cool down	Cooling after baking out	
262	7262		Equilibrate	Time after baking out until measuring unit is stable	
	0 _			again	
263	7263	Н	Set meas. methode nok	Set measuring method parameter in measuring mechanism failed after heating out	
264	7264	Н	Set meas. methode ok	Set measuring method para. in measuring mecha- nism successful after heating out	
270	7270	Н	Parameterlog disabled	No recording of parameter changes	
271		Н	Old time	Old time (after changing the time)	
272		Н	New time	New time (after changing the time)	
300	7300		Curr. input-1 warning limits	Warning limit values for current input 1 violated	
301	7301		Curr. input-2 warning limits	Warning limit values for current input 2 violated	
302	7302		Curr. input-3 warning limits	Warning limit values for current input 3 violated	
303	7303		Curr. input-4 warning limits	Warning limit values for current input 4 violated	
304	7304	-	Curr. input-5 warning limits	Warning limit values for current input 5 violated	
305	7305		Curr. input-6 warning limits	Warning limit values for current input 6 violated	
306	7306		Curr. input-7 warning limits	Warning limit values for current input 7 violated	
307	7307		Curr. input-8 warning limits	Warning limit values for current input 8 violated	
308	7308	-	Abort bake out -> set meas.	Heating of the columns is aborted and the measuring	
			method	method is loaded.	
310	7310	W	Wago AI1 warning limits	Warning limit values for Wago analog input 1 violated	
311	7311		Wago Al2 warning limits	Warning limit values for Wago analog input 2 violated	
312	7312		Wago AI3 warning limits	Warning limit values for Wago analog input 3 violated	
313	7313	-	Wago Al4 warning limits	Warning limit values for Wago analog input 4 violated	
314	7314		Wago AI5 warning limits	Warning limit values for Wago analog input 5 violated	
315	7315	-	Wago Al6 warning limits	Warning limit values for Wago analog input 6 violated	
316	7316		Wago AI7 warning limits	Warning limit values for Wago analog input 7 violated	
317	7317	-	Wago Al8 warning limits	Warning limits for Wago analog input 8 violated	
318	7318		Wago AI9 warning limits	Warning limits for Wago analog input 9 violated	
319	7319		Wago AI10 warning limits	Warning limit values for Wago analog input 10 violat- ed	
320	7320	W	Wago AI11 warning limits	Warning limit values for Wago analog input 11 violat- ed	
321	7321	W	Wago AI12 warning limits	Warning limits for Wago analog input 12 violated	
322	7322		Wago AI13 warning limits	Warning limits for Wago analog input 12 violated	
323	7323		Wago AI14 warning limits	Warning limits for Wago analog input 16 violated	
324	7324		Wago AI15 warning limits	Warning limits for Wago analog input 14 violated	
325	7325	-	Wago AI16 warning limits	Warning limits for Wago analog input 16 violated	
020	1020			warning infine for ways analog input to violated	

RMG

5 Operation

.....

330	7330		Multistream parameter	Error during multistream parameterization
331	7331	W	Can't read Dil-Switch	Readout of Dil switch positions failed
332	7332	W	Explorer running!	Windows Explorer is active
333	7333	W	Saving display calibration	Touch screen calibration has not been saved
334	7334	W	Software-reboot analyzer	Restart of the measuring mechanism by analysis computer
335	7335	W	CP-Data	No measurement data received from measuring mechanism
340	7340	W	Nitrogen Min/Max	Ana. & Cal: Nitrogen outside user limits
341	7341		Methane Min/Max	Ana. & Cal: Methane outside user limits
342	7342		Carbon Dioxide Min/Max	Ana. & Cal: Carbon dioxide outside user limits
343	7343		Ethane Min/Max	Ana. & Cal: Ethan outside user limits
344	7344		Propane Min/Max	Ana. & Cal: Propane outside user limits
345	7345		iso-Butane Min/Max	Ana. & Cal: iso-butane outside user limits
346	7346		n-Butane Min/Max	Ana. & Cal: n-butane outside user limits
347	7347		neo-Pentane Min/Max	Ana. & Cal: neo-pentane outside user limits
348	7348		iso-Pentane Min/Max	Ana. & Cal: iso-pentane outside user limits
349	7349		n-Pentane Min/Max	Ana. & Cal: n-pentane outside user limits
350	7350		C6+ Min/Max	Ana. & Cal: C6+ outside user limits
351	7351		n-Hexane Min/Max	Ana. & Cal: n-Hexan outside user limits
352	7352		n-Heptane Min/Max	Ana. & Cal: n-heptane outside user limits
353	7353		n-Octane Min/Max	Ana. & Cal: n-octane outside user limits
354	7354		n-Nonane Min/Max	Ana. & Cal: n-Nonan outside user limits
355	7355		Oxygen Min/Max	Ana. & Cal: Oxygen outside user limits
356	7356		Helium Min/Max	Ana. & Cal: Helium outside user limits
357	7357		Hydrogen Min/Max	Ana. & Cal: Hydrogen outside user limits
358	7358		Argon Min/Max	Ana. & Cal: Argon outside user limits
359	7359		Reserve Min/Max	(Reserve for future functions)
368	7368		Wago DI1 active	Wago digital output 1 active
369	7369		Wago DI2 active	Wago digital output 1 active
370	7370		Wago DI2 active	Wago digital output 2 active
371	7371		Wago DI3 active Wago DI4 active	Wago digital output 3 active
372	7372		Wago DI5 active	Wago digital output 5 active
373	7373		Wago DI6 active	Wago digital output 6 active
373	7374		Wago DI7 active	Wago digital output 7 active
375	7375		Wago DI8 active	
375	7376			Wago digital output 8 active
	7377		Wago DI9 active	Wago digital output 9 active
377			Wago DI10 active	Wago digital output 10 active
378	7378		Wago DI11 active	Wago digital output 11 active
379	7379		Wago DI12 active	Wago digital output 12 active
380	7380		Wago DI13 active	Wago digital output 13 active
381	7381		Wago DI14 active	Wago digital output 14 active
382	7382		Wago DI15 active	Wago digital output 15 active
383	7383		Wago DI16 active	Wago digital output 16 active
384	7384		Cal: retentions timewarning li- mits	Cal: retention time outside the border
496	7496		Invalid methode	Invalid method
497	7497	E	Too litte data from CP	Too little data received from the movement (GC9390 only)
498	7498	E	Too much data from CP	Too much data received from the movement (GC9390 only)
528	7528	W	Too litte data from CP	Too little data received from the movement (GC9390 only)

81

.....

.....

5 Operation

529	7529	W	Too many data from CP	Too much data received from the movement (GC9390 only)
576	7576	Н	Application change	application change
577	7577	Н	Device reboot required! (Re- gistry)	Device must be restarted
578	7578	Н	EZChrom active	Connection with EZChrom-PC activated
624	7624	E	GCProt timeout	GC <-> Gateway Communication timeout
625	7625	E	GCProt send failed	Send data to gateway failed (GC9300 only)
626	7626	E	GCProt receive failed	Failed data transfer from controller (only GC9310)
627	7627	E	GCProt telegram content incor- rect	Data telegram from controller faulty (only GC9310)
672	7672	W	GCProt missed telegram	Data telegram lost from controller (GC9310 only)
721	7720	Н	Params are sent to GC9310	Parameters are sent to the gateway (GC9300 only)
722	7721	Н	Params are received from GC9300	Parameters are received by the controller (GC9310 only)
723	7723	Н	Params have to be sent to GC9310	new parameters must be sent to the gateway (GC9300 only)

Some messages are listed as both alarms and warnings.

- For the current outputs, you can specify whether they are to be used for custody transfer (alarm) or not (warning).
- For the limit values there are both warning limits (can be set freely via user code) and alarm limits (can only be set via calibration switch).

RMG

6 Technical data

Housing

19" slot		
Dimensions	W x H x D = 213 x 128.4 x 310 mm (42 DU / 3 HU)	83
Ambient temperature	-20 to 55 °C	
Power		
Power supply	24 V/DC -10%/+15%	
Power requirement	25 W	
Control panel		
Control buttons	1 button (HOME)	
Display	LCD touchscreen	
	640 x 240 dots	
	256 colors	
Hardware		
Embedded PC	CPU ARM1176	
Display	533 MHz	
	128 MB RAM	
	64 MB Flash	
Memory		
SD card	4 GB	
Operating system		
Windows CE 6.0		
Digital inputs		
Number	20	
U _{max}	5 V	
I _{max}	13 mA	
f _{max}	10 Hz	
Surge protection	6.8 V	

COM 7

84

.....

Digital outputs	
Number	12
U _{max}	24 V
I _{max}	100 mA
P _{max}	100 mW
Surge protection	33 V
Current inputs	
Number	8
Resolution	20-bit
U _{max}	2.5 V
Ri	250 ohms
Surge protection	6.8 V
Current outputs	
Number	4
Resolution	12-bit
Load	700 ohms
Surge protection	33 V
Data interfaces	
Ethernet (2x)	
LAN 1	RMG network, measuring element connection DHCP server, DHCP client or fixed IP address
LAN 2	Operator network DHCP client or fixed IP address
USB (2x)	
Front	For mouse, ext. hard disk or keyboard
Rear panel	For connection of a PC
Serial (7x)	
COM 1	RS 232 / RS 485, configurable by jumpers
COM 2	RS 232
COM 3	RS 232 / RS 485, configurable by jumpers
COM 4	RS 232 / RS 485, configurable by jumpers
COM 5	RS 232
COM 6	RS 232 / RS 485, configurable by jumpers

RS 232 / RS 485, configurable by jumpers

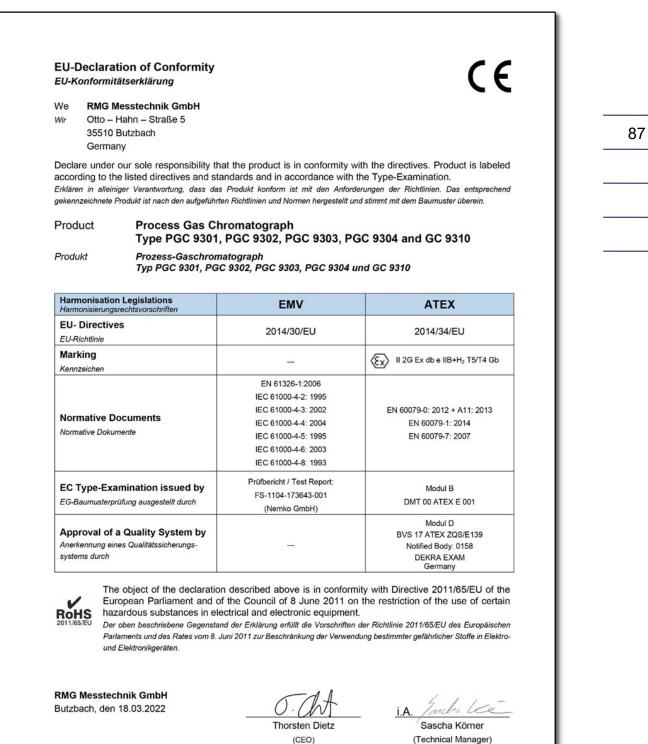
RMG

Appendix

Appendix A: List of parameters

The "Parameter list" is in a separate part of the manual called:	85
PGC9300_AC_Parameter_en_15	
This section of the manual can be accessed and downloaded – if required – from the homepage:	
www.rmg.com	

Appendix B: Certificates


EU-Konformitätserklärung EU-Declaration of Conformity

Baumusterbescheinigung PGC 9304 Type – examination Certificate PGC 9304

> Baumusterbescheinigung PGC 9301 Type – examination Certificate PGC 9301

Baumusterbescheinigung PGC 9090 / CP 4002 VC Type – examination Certificate PGC 9090 / CP 4002 VC

(Technical Manager)

Sitz der Gesellschaft Butzbach - Registergericht Friedberg HRB 2535 Geschäftsführung Barbara Baumann, Thorsten Dietz Qualitätsmanagement DIN EN ISO 9001:2015

Seite 1 von 1

R3-0012

Baumusterprüfbescheinigungen ohne Unterschrift und Siegel haben keine Gültigkeit. Diese Baumusterprüfbescheinigung darf nur unverändert weiterverbreitet werden. Auszüge bedürfen der Genehmigung der Physikalisch-Technischen Bundesanstalt. Type-examination Certificates without signature and seal are not valid. This Type-examination Certificate may not be reproduced other than in full. Extracts may be teken only with the permission of the Physikalisch-Technische Bundesanstalt.

Subject to technical modifications

For further information

If you would like to learn more about the products and solutions from RMG, please visit our website:

www.rmg.com

or your local support office or contact your local sales representative

RMG Messtechnik GmbH

Otto-Hahn-Straße 5 35510 Butzbach, Germany Phone: +49 (0) 6033 897 – 0 Fax: +49 (0) 6033 897 – 130 Email: <u>service@rmg.com</u>

